IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692318307610.html
   My bibliography  Save this article

Operationalizing the neighborhood effects of the built environment on travel behavior

Author

Listed:
  • Gehrke, Steven R.
  • Wang, Liming

Abstract

Evidence of a connection between the built environment and individual travel behavior is substantiated by multidisciplinary research. In general, compact development patterns exhibiting high concentrations of activity locations and a traditional street design support sustainable travel. However, uncertainty in the magnitude of this connection remains due to how the built environment has been operationalized, usually at a geographic boundary chosen out of convenience. This Portland, Oregon study uses household travel survey data to systematically examine variation in the magnitude of this association when measuring land development pattern, urban design, and transportation system features at various scales. Specifically, this study measures 57 built environment features describing an individual's trip origin and destination at 12 combinations of zonal systems and spatial extents, and assesses their effect on home-based mode choice. First, correlations between individual- and household-level walking behaviors and each combination of indicator and geographic boundary were measured to examine scaling and zoning effects associated with the modifiable areal unit problem (MAUP). These sensitivity test results informed the specification of home-based work and non-work multinomial logit models estimating the effect of sociodemographic, economic, and built environment features on mode choice. Our study findings offer new insight into the MAUP's scaling effect on measuring smart growth indicators and their connection to sustainable travel behavior.

Suggested Citation

  • Gehrke, Steven R. & Wang, Liming, 2020. "Operationalizing the neighborhood effects of the built environment on travel behavior," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318307610
    DOI: 10.1016/j.jtrangeo.2019.102561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318307610
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marlon Boarnet, 2011. "A Broader Context for Land Use and Travel Behavior, and a Research Agenda," Journal of the American Planning Association, Taylor & Francis Journals, vol. 77(3), pages 197-213.
    2. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    3. Reid Ewing & Guang Tian & JP Goates & Ming Zhang & Michael J Greenwald & Alex Joyce & John Kircher & William Greene, 2015. "Varying influences of the built environment on household travel in 15 diverse regions of the United States," Urban Studies, Urban Studies Journal Limited, vol. 52(13), pages 2330-2348, October.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    6. Mitra, Raktim & Buliung, Ron N., 2012. "Built environment correlates of active school transportation: neighborhood and the modifiable areal unit problem," Journal of Transport Geography, Elsevier, vol. 20(1), pages 51-61.
    7. Manaugh, Kevin & Kreider, Tyler, 2013. "What is mixed use? Presenting an interaction method for measuring land use mix," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 63-72.
    8. Berke, E.M. & Koepsell, T.D. & Moudon, A.V. & Hoskins, R.E. & Larson, E.B., 2007. "Association of the built environment with physical activity and obesity in older persons," American Journal of Public Health, American Public Health Association, vol. 97(3), pages 486-492.
    9. Li, Shengxiao & Zhao, Pengjun, 2015. "The determinants of commuting mode choice among school children in Beijing," Journal of Transport Geography, Elsevier, vol. 46(C), pages 112-121.
    10. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    11. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    12. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    13. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    14. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Development of destination choice models for pedestrian travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 255-265.
    15. Cervero, Robert, 1989. "Suburban Employment Centers: Probing the Influence of Site Features on the Journey-to-Work," University of California Transportation Center, Working Papers qt9ts232nv, University of California Transportation Center.
    16. Guo, Zhan & Loo, Becky P.Y., 2013. "Pedestrian environment and route choice: evidence from New York City and Hong Kong," Journal of Transport Geography, Elsevier, vol. 28(C), pages 124-136.
    17. T. Arentze & H. Timmermans, 2005. "Representing mental maps and cognitive learning in micro-simulation models of activity-travel choice dynamics," Transportation, Springer, vol. 32(4), pages 321-340, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Hongwei, 2021. "Evaluating the impacts of transit-oriented developments (TODs) on household transportation expenditures in California," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Shenjing He & Chenxi Li & Yang Xiao & Qiyang Liu, 2022. "Examining neighborhood effects on residents’ daily activities in central Shanghai, China: Integrating “big data†and “thick dataâ€," Environment and Planning B, , vol. 49(7), pages 2011-2028, September.
    3. Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
    4. Zhang, Lihong & Liu, Yan & Lieske, Scott N. & Corcoran, Jonathan, 2022. "Using modality styles to understand cycling dissonance: The role of the street-scale environment in commuters' travel mode choice," Journal of Transport Geography, Elsevier, vol. 103(C).
    5. Sangwan Lee, 2022. "An In-Depth Understanding of the Residential Property Value Premium of a Bikesharing Service in Portland, Oregon," Land, MDPI, vol. 11(9), pages 1-16, August.
    6. Sangwan Lee & Liming Wang, 2022. "Intermediate Effect of the COVID-19 Pandemic on Prices of Housing near Light Rail Transit: A Case Study of the Portland Metropolitan Area," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    7. Toger, Marina & Türk, Umut & Östh, John & Kourtit, Karima & Nijkamp, Peter, 2023. "Inequality in leisure mobility: An analysis of activity space segregation spectra in the Stockholm conurbation," Journal of Transport Geography, Elsevier, vol. 111(C).
    8. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    2. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Jiangping Zhou & Yin Wang & Jiangyue Wu, 2018. "Mode Choice of Commuter Students in a College Town: An Exploratory Study from the United States," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    4. Samira Ramezani & Barbara Pizzo & Elizabeth Deakin, 2018. "An integrated assessment of factors affecting modal choice: towards a better understanding of the causal effects of built environment," Transportation, Springer, vol. 45(5), pages 1351-1387, September.
    5. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    6. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    7. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    8. Thi Mai Chi Nguyen & Hironori Kato & Le Binh Phan, 2020. "Is Built Environment Associated with Travel Mode Choice in Developing Cities? Evidence from Hanoi," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    9. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    10. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    11. Ha Na Im & Chang Gyu Choi, 2019. "The hidden side of the entropy-based land-use mix index: Clarifying the relationship between pedestrian volume and land-use mix," Urban Studies, Urban Studies Journal Limited, vol. 56(9), pages 1865-1881, July.
    12. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    13. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    14. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    15. Schneider, Robert James, 2011. "Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling," University of California Transportation Center, Working Papers qt06v2g6dh, University of California Transportation Center.
    16. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    17. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    18. Sarjala, Satu, 2019. "Built environment determinants of pedestrians’ and bicyclists’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route," Journal of Transport Geography, Elsevier, vol. 78(C), pages 56-69.
    19. Guerra, Erick & Caudillo, Camilo & Goytia, Cynthia & Quiros, Tatiana Peralta & Rodriguez, Camila, 2018. "Residential location, urban form, and household transportation spending in Greater Buenos Aires," Journal of Transport Geography, Elsevier, vol. 72(C), pages 76-85.
    20. Zhang, Mengzhu & Zhao, Pengjun, 2021. "Literature review on urban transport equity in transitional China: From empirical studies to universal knowledge," Journal of Transport Geography, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318307610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.