IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5773-d386086.html
   My bibliography  Save this article

Is Built Environment Associated with Travel Mode Choice in Developing Cities? Evidence from Hanoi

Author

Listed:
  • Thi Mai Chi Nguyen

    (Department of Urban Infrastructure Planning, Faculty of Architecture and Planning, National University of Civil Engineering, Hanoi 100000, Vietnam)

  • Hironori Kato

    (Department of Civil Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan)

  • Le Binh Phan

    (Master’s Program in Infrastructure Engineering, Vietnam Japan University, Hanoi 129000, Vietnam)

Abstract

This paper examines the association between the built environment (BE) and travel behavior in Hanoi, Vietnam. A multinomial logit model is used to analyze individuals’ choice of travel mode from a dataset collected via a questionnaire-based household travel survey in 2016 and the geospatial data of BE variables; the dataset contains 762 responses from local residents in ten districts of the Hanoi Metropolitan Area about their daily travel episodes. It also examines a spatial aggregation effect by comparing model performances among four buffering distances and ward-zones. The results showed that (1) a higher population density around an individual’s home is associated with more bus use and less motorbike and car use; (2) mixed land use around the home, average tax revenue near the home, and bus frequency at the workplace have positive relationships with bus ridership; (3) senior people, students, or unskilled laborers tend to use the bus; (4) the spatial aggregation bias significantly affects the estimation results; and (5) new immigrants tend to choose to reside in areas designed for automobile users. Finally, there are several policy implications for transit-oriented development (TOD) in Hanoi, including: (1) parking regulations and/or control strategies should be jointly incorporated into the Hanoi’s TOD policy; (2) Hanoi’s TOD policy should be carefully designed in terms of its scope of development site and type; and (3) a polycentric structure strategy only may not be sufficient for increasing public transit ridership.

Suggested Citation

  • Thi Mai Chi Nguyen & Hironori Kato & Le Binh Phan, 2020. "Is Built Environment Associated with Travel Mode Choice in Developing Cities? Evidence from Hanoi," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5773-:d:386086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    2. Tran, Minh Tu & Zhang, Junyi & Chikaraishi, Makoto & Fujiwara, Akimasa, 2016. "A joint analysis of residential location, work location and commuting mode choices in Hanoi, Vietnam," Journal of Transport Geography, Elsevier, vol. 54(C), pages 181-193.
    3. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    4. Stefan Bakker & Kathleen Dematera Contreras & Monica Kappiantari & Nguyen Anh Tuan & Marie Danielle Guillen & Gessarin Gunthawong & Mark Zuidgeest & Duncan Liefferink & Martin Van Maarseveen, 2017. "Low-Carbon Transport Policy in Four ASEAN Countries: Developments in Indonesia, the Philippines, Thailand and Vietnam," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    5. Dan Trudeau, 2018. "Sustaining Suburbia through New Urbanism: Toward Growing, Green, and Just Suburbs?," Urban Planning, Cogitatio Press, vol. 3(4), pages 50-60.
    6. Cervero, Robert B., 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    7. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    8. Strauss, Jillian & Miranda-Moreno, Luis F., 2013. "Spatial modeling of bicycle activity at signalized intersections," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 47-58.
    9. Hiroaki Suzuki & Robert Cervero & Kanako Iuchi, 2013. "Transforming Cities with Transit : Transit and Land-Use Integration for Sustainable Urban Development [Transformando las ciudades con el transporte público : integración del transporte público y el," World Bank Publications - Books, The World Bank Group, number 12233.
    10. Hiroaki Suzuki & Jin Murakami & Yu-Hung Hong & Beth Tamayose, 2015. "Financing Transit-Oriented Development with Land Values : Adapting Land Value Capture in Developing Countries," World Bank Publications - Books, The World Bank Group, number 21286.
    11. Mitra, Raktim & Buliung, Ron N., 2012. "Built environment correlates of active school transportation: neighborhood and the modifiable areal unit problem," Journal of Transport Geography, Elsevier, vol. 20(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Zhang & Li Zhang & Yanjun Liu & Lele Zhang, 2023. "Understanding Travel Mode Choice Behavior: Influencing Factors Analysis and Prediction with Machine Learning Method," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Fang, Jia & Yan, Xiang & Bejleri, Ilir & Chen, Changjie, 2022. "Which trip destination matters? Estimating the influence of the built environment on mode choice for home-based complex tours," Journal of Transport Geography, Elsevier, vol. 105(C).
    3. Ashik, F.R. & Sreezon, A.I.Z. & Rahman, M.H. & Zafri, N.M. & Labib, S.M., 2024. "Built environment influences commute mode choice in a global south megacity context: Insights from explainable machine learning approach," Journal of Transport Geography, Elsevier, vol. 116(C).
    4. Nguyen, Minh Hieu & Pojani, Dorina & Nguyen, Thanh Chuong & Ha, Thanh Tung, 2021. "The impact of Covid-19 on children's active travel to school in Vietnam," Journal of Transport Geography, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdi, Mohammad Hamed, 2021. "What the newcomers to transit-oriented development are confronted with? Evidence from Iranian policy and planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Mohammad Hamed Abdi & Ali Soltani, 2022. "Which Fabric/Scale Is Better for Transit-Oriented Urban Design: Case Studies in a Developing Country," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    3. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    4. Lorea Mendiola & Pilar González, 2021. "Urban Development and Sustainable Mobility: A Spatial Analysis in the Buenos Aires Metropolitan Area," Land, MDPI, vol. 10(2), pages 1-23, February.
    5. Cervero, Robert & Dai, Danielle, 2014. "BRT TOD: Leveraging transit oriented development with bus rapid transit investments," Transport Policy, Elsevier, vol. 36(C), pages 127-138.
    6. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2016. "The impacts of built environment on home-based work and non-work trips: An empirical study from Iran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 196-207.
    7. Gehrke, Steven R. & Wang, Liming, 2020. "Operationalizing the neighborhood effects of the built environment on travel behavior," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Murakami, Jin, 2018. "The Government Land Sales programme and developers’ willingness to pay for accessibility in Singapore, 1990–2015," Land Use Policy, Elsevier, vol. 75(C), pages 292-302.
    9. Hirschhorn, Fabio & Veeneman, Wijnand & van de Velde, Didier, 2019. "Organisation and performance of public transport: A systematic cross-case comparison of metropolitan areas in Europe, Australia, and Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 419-432.
    10. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    11. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    12. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    13. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    14. Mouton, Morgan & Deraëve, Sophie & Guelton, Sonia & Poinsot, Philippe, 2023. "Negotiated windfalls: Mapping how public actors pursue and share land-value capture in Nanterre-la-Folie, France," Land Use Policy, Elsevier, vol. 131(C).
    15. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    16. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    17. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    19. Qing Shen & Simin Xu & Jiang Lin, 2018. "Effects of bus transit-oriented development (BTOD) on single-family property value in Seattle metropolitan area," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 2960-2979, October.
    20. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5773-:d:386086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.