IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v52y2015icp133-141.html
   My bibliography  Save this article

Single-stage shunting minimizing weighted departure times

Author

Listed:
  • Jaehn, Florian
  • Rieder, Johannes
  • Wiehl, Andreas

Abstract

In a traditional rail-freight hump yard, a huge number of freight cars are perpetually shunted to form outbound trains. In order to transport each car to its destination, the inbound trains are decoupled and disassembled into individual cars, which are then moved to one of the several classification tracks where they are reassembled to form new outbound trains. Motivated by the situation at Munich shunting yard, we consider a traditional single-stage shunting problem, where freight cars form new, single-destination trains with an arbitrary freight car order. There might be multiple trains to one destination so that the assignment of freight cars to outbound trains is determined by the sequence of inbound trains to be processed. Each freight car has a priority value and the objective is to minimize the weighted sum of priority values of outbound trains multiplied by the time units that have elapsed until departure. First, we elaborate a MIP formulation and then we provide a lower bound and develop precedence relations. Furthermore, we present heuristic procedures as well as a branch and bound approach. The paper concludes with computational results comparing the proposed algorithms with CPLEX.

Suggested Citation

  • Jaehn, Florian & Rieder, Johannes & Wiehl, Andreas, 2015. "Single-stage shunting minimizing weighted departure times," Omega, Elsevier, vol. 52(C), pages 133-141.
  • Handle: RePEc:eee:jomega:v:52:y:2015:i:c:p:133-141
    DOI: 10.1016/j.omega.2014.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048314001406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2014.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    2. Blanco, Víctor & Puerto, Justo & Ramos, Ana B., 2011. "Expanding the Spanish high-speed railway network," Omega, Elsevier, vol. 39(2), pages 138-150, April.
    3. Kuo, Ching-Chung & Nicholls, Gillian M., 2007. "A mathematical modeling approach to improving locomotive utilization at a freight railroad," Omega, Elsevier, vol. 35(5), pages 472-485, October.
    4. Hong, Sung-Pil & Kim, Kyung Min & Lee, Kyungsik & Hwan Park, Bum, 2009. "A pragmatic algorithm for the train-set routing: The case of Korea high-speed railway," Omega, Elsevier, vol. 37(3), pages 637-645, June.
    5. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    6. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    7. Kraft, Edwin R., 2000. "A Hump Sequencing Algorithm for Real Time Management of Train Connection Reliability," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 39(4).
    8. Yang, Lixing & Li, Keping & Gao, Ziyou & Li, Xiang, 2012. "Optimizing trains movement on a railway network," Omega, Elsevier, vol. 40(5), pages 619-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    2. Florin RUSCA & Mihaela POPA & Eugen ROSCA & Aura RUSCA & Mircea ROSCA & Oana DINU, 2019. "Assessing The Transit Capacity Of Port Shunting Yards Through Discrete Simulation," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(4), pages 101-112, December.
    3. Wang, Dian & Zhao, Jun & Peng, Qiyuan, 2022. "Optimizing the loaded train combination problem at a heavy-haul marshalling station," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    4. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lixing & Li, Keping & Gao, Ziyou & Li, Xiang, 2012. "Optimizing trains movement on a railway network," Omega, Elsevier, vol. 40(5), pages 619-633.
    2. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Wang, Bo, 2015. "A practical model for last train rescheduling with train delay in urban railway transit networks," Omega, Elsevier, vol. 50(C), pages 29-42.
    3. Yang, Lixing & Zhou, Xuesong & Gao, Ziyou, 2014. "Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach," Omega, Elsevier, vol. 48(C), pages 75-93.
    4. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    5. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    6. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    7. Blanco, Víctor & Puerto, Justo & Ramos, Ana B., 2011. "Expanding the Spanish high-speed railway network," Omega, Elsevier, vol. 39(2), pages 138-150, April.
    8. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    9. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    10. Nils Boysen & Simon Emde & Malte Fliedner, 2016. "The basic train makeup problem in shunting yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 207-233, January.
    11. Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
    12. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    13. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    14. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    15. Daniela Ambrosino & Claudia Caballini, 2019. "New solution approaches for the train load planning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 299-325, September.
    16. Peter C. Schuur & Christopher N. Kellersmann, 2022. "Improving Transport Logistics by Aligning Long Combination Vehicles via Mobile Hub & Spoke Systems," Logistics, MDPI, vol. 6(1), pages 1-18, February.
    17. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    18. Svetla Stoilova, 2020. "An Integrated Multi-Criteria and Multi-Objective Optimization Approach for Establishing the Transport Plan of Intercity Trains," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    19. Li, Jiajie & Bai, Yun & Chen, Yao & Yang, Lingling & Wang, Qian, 2022. "A two-stage stochastic optimization model for integrated tram timetable and speed control with uncertain dwell times," Energy, Elsevier, vol. 260(C).
    20. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:52:y:2015:i:c:p:133-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.