IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v43y2014icp71-82.html
   My bibliography  Save this article

Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier

Author

Listed:
  • Salazar-González, Juan-José

Abstract

This paper presents the results of a research project funded by a regional carrier operating inter-island services within the Canary Islands (Spain) in addition to services to Morocco and Portugal. It operates between 100 and 150 flights a day using three airline operators. The main scope of the project was to solve fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems on real-world data. The special characteristics of the carrier, flying between 7 am and 11 pm every day, have motivated us to design models and algorithms that are different than the ones addressed in the literature, typically built for large airline companies. This paper shows a solution approach for an integrated fleet-assignment, aircraft-routing and crew-pairing problem covering the flights of a single day. This is a new combinatorial problem that can be considered as a 2-depot vehicle routing problem with driver changes, where the vehicles represent aircrafts and the drivers represent crews. Adapting approaches from the vehicle routing literature, this paper describes a heuristic algorithm based on an integer programming model. In a similar way, this paper also addresses the rostering problem. This problem can be decomposed in smaller problems taking into account operators, bases and crew groups. These problems admit a compact formulation through mixed integer linear programming models which can be tracked by modern general-purpose solvers. This paper illustrates the success of our solution approaches on real-world instances. The airline carrier is currently using these approaches.

Suggested Citation

  • Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
  • Handle: RePEc:eee:jomega:v:43:y:2014:i:c:p:71-82
    DOI: 10.1016/j.omega.2013.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048313000674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2013.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Souai, Nadia & Teghem, Jacques, 2009. "Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem," European Journal of Operational Research, Elsevier, vol. 199(3), pages 674-683, December.
    2. Alberto Caprara & Paolo Toth & Daniele Vigo & Matteo Fischetti, 1998. "Modeling and Solving the Crew Rostering Problem," Operations Research, INFORMS, vol. 46(6), pages 820-830, December.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    5. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    6. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    7. Lucic, Panta & Teodorovic, Dusan, 1999. "Simulated annealing for the multi-objective aircrew rostering problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 19-45, January.
    8. Li, Jing-Quan & Borenstein, Denis & Mirchandani, Pitu B., 2008. "Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil," Omega, Elsevier, vol. 36(6), pages 1133-1149, December.
    9. Anne Mercier, 2008. "A Theoretical Comparison of Feasibility Cuts for the Integrated Aircraft-Routing and Crew-Pairing Problem," Transportation Science, INFORMS, vol. 42(1), pages 87-104, February.
    10. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    11. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    12. Diego Klabjan & Ellis L. Johnson & George L. Nemhauser & Eric Gelman & Srini Ramaswamy, 2002. "Airline Crew Scheduling with Time Windows and Plane-Count Constraints," Transportation Science, INFORMS, vol. 36(3), pages 337-348, August.
    13. Yang, Lixing & Li, Keping & Gao, Ziyou & Li, Xiang, 2012. "Optimizing trains movement on a railway network," Omega, Elsevier, vol. 40(5), pages 619-633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    2. Valentina Cacchiani & Juan-José Salazar-González, 2017. "Optimal Solutions to a Real-World Integrated Airline Scheduling Problem," Transportation Science, INFORMS, vol. 51(1), pages 250-268, February.
    3. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    4. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    5. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    6. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    7. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    8. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    9. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    10. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
    11. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    12. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    13. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    14. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    15. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    16. Shengzhi Shao & Hanif D. Sherali & Mohamed Haouari, 2017. "A Novel Model and Decomposition Approach for the Integrated Airline Fleet Assignment, Aircraft Routing, and Crew Pairing Problem," Transportation Science, INFORMS, vol. 51(1), pages 233-249, February.
    17. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    18. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    19. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    20. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:43:y:2014:i:c:p:71-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.