IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v47y2013i3p330-343.html
   My bibliography  Save this article

Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line

Author

Listed:
  • Hugo M. Repolho

    (Department of Civil Engineering, University of Coimbra, Pólo II, 3030-788 Coimbra, Portugal)

  • António P. Antunes

    (Department of Civil Engineering, University of Coimbra, Pólo II, 3030-788 Coimbra, Portugal)

  • Richard L. Church

    (Department of Geography, University of California Santa Barbara, Santa Barbara, California 93106)

Abstract

Rail transportation has experienced a rebirth in the last few decades, and a very large investment will certainly be made in new railway lines in the years to come---especially in high-speed rail lines. The success of such investment is heavily dependent on rail ridership, which in turn is dependent on the location of railway stations. In this paper, we present a mixed-integer optimization model that determines the optimal location (and number) of stations along a railway line that will be introduced over an existing transportation network. The stations are chosen within a set of possible locations defined a priori according to the objective of maximizing travel cost savings. The model takes into account the sensitivity of rail ridership to time losses because of stops at intermediate stations, as well as (static) competition from other modes. The practical usefulness of the model is illustrated with a case study involving a high-speed rail line expected to be built in Portugal in the future: the Lisbon-Porto line.

Suggested Citation

  • Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
  • Handle: RePEc:inm:ortrsc:v:47:y:2013:i:3:p:330-343
    DOI: 10.1287/trsc.1120.0425
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0425
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dwi Groß & Horst Hamacher & Simone Horn & Anita Schöbel, 2009. "Stop location design in public transportation networks: covering and accessibility objectives," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 335-346, December.
    2. Blanco, Víctor & Puerto, Justo & Ramos, Ana B., 2011. "Expanding the Spanish high-speed railway network," Omega, Elsevier, vol. 39(2), pages 138-150, April.
    3. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    4. Murray, Alan T., 2001. "Strategic analysis of public transport coverage," Socio-Economic Planning Sciences, Elsevier, vol. 35(3), pages 175-188, September.
    5. Anita Schöbel & Horst W. Hamacher & Annegret Liebers & Dorothea Wagner, 2009. "The Continuous Stop Location Problem In Public Transportation Networks," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 13-30.
    6. Ángel Marín & Patricia Jaramillo, 2009. "Urban rapid transit network design: accelerated Benders decomposition," Annals of Operations Research, Springer, vol. 169(1), pages 35-53, July.
    7. Laporte, Gilbert & Mesa, Juan A. & Ortega, Francisco A., 2000. "Optimization methods for the planning of rapid transit systems," European Journal of Operational Research, Elsevier, vol. 122(1), pages 1-10, April.
    8. Alan Murray, 2003. "A Coverage Model for Improving Public Transit System Accessibility and Expanding Access," Annals of Operations Research, Springer, vol. 123(1), pages 143-156, October.
    9. Bruno, Giuseppe & Ghiani, Gianpaolo & Improta, Gennaro, 1998. "A multi-modal approach to the location of a rapid transit line," European Journal of Operational Research, Elsevier, vol. 104(2), pages 321-332, January.
    10. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    11. Ginés de Rus & Gustavo Nombela, 2007. "Is Investment in High Speed Rail Socially Profitable?," Journal of Transport Economics and Policy, University of Bath, vol. 41(1), pages 3-23, January.
    12. Vukan R. Vuchic & Gordon F. Newell, 1968. "Rapid Transit Interstation Spacings for Minimum Travel Time," Transportation Science, INFORMS, vol. 2(4), pages 303-339, November.
    13. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    14. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    15. Gilbert Laporte & Juan Mesa & Francisco Ortega & Ignacio Sevillano, 2005. "Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment," Annals of Operations Research, Springer, vol. 136(1), pages 49-63, April.
    16. Vukan R. Vuchic, 1969. "Rapid Transit Interstation Spacings for Maximum Number of Passengers," Transportation Science, INFORMS, vol. 3(3), pages 214-232, August.
    17. Gleason, John M., 1975. "A set covering approach to bus stop location," Omega, Elsevier, vol. 3(5), pages 605-608, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konrad Steiner & Stefan Irnich, 2016. "Schedule-based integrated inter-city bus line planning via branch-and-cut," Working Papers 1608, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Huang, Ying & Xu, Wangtu (Ato), 2021. "Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    4. Szobi Pavel & Nigrin Tomáš & Oravec Juraj, 2023. "Political Will and Economic Necessity? The Construction of High-Speed Rail Networks in Portugal and East Germany," Review of Economic Perspectives, Sciendo, vol. 23(1), pages 19-34, March.
    5. Roy, Sandeepan & Maji, Avijit, 2019. "Optimization of High-Speed Railway Station Location Selection Based on Accessibility and Environmental Impact," ADBI Working Papers 953, Asian Development Bank Institute.
    6. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    7. Roy, Sandeepan & Maji, Avijit, 2019. "A Station Location Identification Model for an Integrated Interoperable High-Speed Rail System," ADBI Working Papers 956, Asian Development Bank Institute.
    8. Repolho, Hugo M. & Church, Richard L. & Antunes, António P., 2016. "Optimizing station location and fleet composition for a high-speed rail line," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 437-452.
    9. Andreas Bärmann & Alexander Martin & Hanno Schülldorf, 2017. "A Decomposition Method for Multiperiod Railway Network Expansion—With a Case Study for Germany," Transportation Science, INFORMS, vol. 51(4), pages 1102-1121, November.
    10. Li, Xiaolong & Wu, Zongfa & Zhao, Xingchen, 2020. "Economic effect and its disparity of high speed rail in China: A study of mechanism based on synthesis control method," Transport Policy, Elsevier, vol. 99(C), pages 262-274.
    11. Perea, Federico & Mesa, Juan A. & Laporte, Gilbert, 2014. "Adding a new station and a road link to a road–rail network in the presence of modal competition," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 1-16.
    12. Luis Cadarso & Ángel Marín, 2017. "Improved rapid transit network design model: considering transfer effects," Annals of Operations Research, Springer, vol. 258(2), pages 547-567, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    2. Emilio Carrizosa & Jonas Harbering & Anita Schöbel, 2016. "Minimizing the passengers’ traveling time in the stop location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1325-1337, October.
    3. M. C. López-de-los-Mozos & Juan A. Mesa, 2022. "To stop or not to stop: a time-constrained trip covering location problem on a tree network," Annals of Operations Research, Springer, vol. 316(2), pages 1039-1061, September.
    4. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    5. Luis Cadarso & Ángel Marín, 2017. "Improved rapid transit network design model: considering transfer effects," Annals of Operations Research, Springer, vol. 258(2), pages 547-567, November.
    6. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    7. Eusebio Angulo & Ricardo García-Ródenas & José Luis Espinosa-Aranda, 2016. "A Lagrangian relaxation approach for expansion of a highway network," Annals of Operations Research, Springer, vol. 246(1), pages 101-126, November.
    8. Matisziw, Timothy C. & Murray, Alan T. & Kim, Changjoo, 2006. "Strategic route extension in transit networks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 661-673, June.
    9. Repolho, Hugo M. & Church, Richard L. & Antunes, António P., 2016. "Optimizing station location and fleet composition for a high-speed rail line," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 437-452.
    10. Laporte, Gilbert & Mesa, Juan A. & Ortega, Francisco A., 2000. "Optimization methods for the planning of rapid transit systems," European Journal of Operational Research, Elsevier, vol. 122(1), pages 1-10, April.
    11. Brezina, Tadej & Knoflacher, Hermann, 2014. "Railway trip speeds and areal coverage. The emperor’s new clothes of effectivity?," Journal of Transport Geography, Elsevier, vol. 39(C), pages 121-130.
    12. Perea, Federico & Mesa, Juan A. & Laporte, Gilbert, 2014. "Adding a new station and a road link to a road–rail network in the presence of modal competition," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 1-16.
    13. Konrad Steiner & Stefan Irnich, 2016. "Schedule-based integrated inter-city bus line planning via branch-and-cut," Working Papers 1608, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Canca, David & Andrade-Pineda, José Luis & De-Los-Santos, Alicia & González-R, Pedro Luis, 2021. "A quantitative approach for the long-term assessment of Railway Rapid Transit network construction or expansion projects," European Journal of Operational Research, Elsevier, vol. 294(2), pages 604-621.
    15. Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.
    16. Piotr Kaszczyszyn & Natalia Sypion-Dutkowska, 2019. "Walking Access to Public Transportation Stops for City Residents. A Comparison of Methods," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    17. Tzay-An Shiau & Ching-Shuan Lee, 2017. "Measuring Network-Based Public Transit Performance Using Fuzzy Measures and Fuzzy Integrals," Sustainability, MDPI, vol. 9(5), pages 1-16, April.
    18. Peng, Ya-Ting & Li, Zhi-Chun & Choi, Keechoo, 2017. "Transit-oriented development in an urban rail transportation corridor," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 269-290.
    19. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    20. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:47:y:2013:i:3:p:330-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.