IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i19p6336-6362.html
   My bibliography  Save this article

The optimality box in uncertain data for minimising the sum of the weighted job completion times

Author

Listed:
  • Tsung-Chyan Lai
  • Yuri N. Sotskov
  • Natalja G. Egorova
  • Frank Werner

Abstract

An uncertain single-machine scheduling problem is considered, where the processing time of a job can take any real value from a given segment. The criterion is to minimise the total weighted completion time of the n jobs, a weight being associated with each given job. We use the optimality box as a stability measure of the optimal schedule and derive an O(n)-algorithm for calculating the optimality box for a fixed permutation of the given jobs. We investigate properties of the optimality box using blocks of the jobs. If each job belongs to a single block, then the largest optimality box may be constructed in O(nlogn) $ O(n \log n) $ time. For the general case, we apply dynamic programming for constructing a job permutation with the largest optimality box. The computational results for finding a permutation with the largest optimality box show that such a permutation is close to an optimal one, which can be determined after completing the jobs when their processing times became known.

Suggested Citation

  • Tsung-Chyan Lai & Yuri N. Sotskov & Natalja G. Egorova & Frank Werner, 2018. "The optimality box in uncertain data for minimising the sum of the weighted job completion times," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6336-6362, October.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:19:p:6336-6362
    DOI: 10.1080/00207543.2017.1398426
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1398426
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1398426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri N. Sotskov & Natalja G. Egorova, 2019. "The Optimality Region for a Single-Machine Scheduling Problem with Bounded Durations of the Jobs and the Total Completion Time Objective," Mathematics, MDPI, vol. 7(5), pages 1-21, April.
    2. Yuri N. Sotskov & Natalja M. Matsveichuk & Vadzim D. Hatsura, 2020. "Schedule Execution for Two-Machine Job-Shop to Minimize Makespan with Uncertain Processing Times," Mathematics, MDPI, vol. 8(8), pages 1-51, August.
    3. Zhenpeng Li & Congdian Cheng, 2023. "The Expected Competitive Ratio on a Kind of Stochastic-Online Flowtime Scheduling with Machine Subject to an Uncertain Breakdown," Mathematics, MDPI, vol. 11(11), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:19:p:6336-6362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.