IDEAS home Printed from https://ideas.repec.org/a/taf/tjbaxx/v4y2021i2p125-139.html
   My bibliography  Save this article

Methodology to combine theoretical knowledge with a data-driven probabilistic graphical model

Author

Listed:
  • Kazim Topuz
  • Brett D. Jones
  • Sumeyra Sahbaz
  • Murad Moqbel

Abstract

This study presents an analytic inference methodology using probabilistic modeling that provides faster decision-making and a better understanding of complex relations. Two educational psychology models (i.e., the MUSIC Model of Motivation and the domain identification model) were coupled with a data-driven Probabilistic Graphical Model to provide a top-down and bottom-up combination for reasoning. Using survey data from middle school students, Bayesian Network models captured the probabilistic interactions between students’ perceptions of their science class, their identification with science, and their science career goals. Complex/non-linear relationships among these variables revealed that students’ perceptions of their science class (i.e., eMpowerment, Usefulness, Success, Interest, and Caring) were significant predictors of their science-related career goals. These findings provide validity evidence for using the MUSIC and domain identification models and provide educators and school administrators with a web-based simulator to estimate the effect of students’ science class perceptions on their science identification and career goals.

Suggested Citation

  • Kazim Topuz & Brett D. Jones & Sumeyra Sahbaz & Murad Moqbel, 2021. "Methodology to combine theoretical knowledge with a data-driven probabilistic graphical model," Journal of Business Analytics, Taylor & Francis Journals, vol. 4(2), pages 125-139, July.
  • Handle: RePEc:taf:tjbaxx:v:4:y:2021:i:2:p:125-139
    DOI: 10.1080/2573234X.2021.1937351
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/2573234X.2021.1937351
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/2573234X.2021.1937351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    2. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    3. Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjbaxx:v:4:y:2021:i:2:p:125-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjba .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.