IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v342y2024i1d10.1007_s10479-023-05799-0.html
   My bibliography  Save this article

Decision support system for appointment scheduling and overbooking under patient no-show behavior

Author

Listed:
  • Kazim Topuz

    (The University of Tulsa)

  • Timothy L. Urban

    (The University of Tulsa)

  • Robert A. Russell

    (The University of Tulsa)

  • Mehmet B. Yildirim

    (Wichita State University)

Abstract

Data availability enables clinics to use predictive analytics to improve appointment scheduling and overbooking decisions based on the predicted likelihood of patients missing their appointment (no-shows). Analyzing data using machine learning can uncover hidden patterns and provide valuable business insights to devise new business models to better meet consumers’ needs and seek a competitive advantage in healthcare. The innovative application of machine learning and analytics can significantly increase the operational efficiency of online scheduling. This study offers an intelligent, yet explainable, analytics framework in scheduling systems for primary-care clinics considering individual patients’ no-show rates that may vary for each appointment day and time while generating appointment and overbooking decisions. We use the predicted individual no-show rates in two ways: (1) a probability-based greedy approach to schedule patients in time slots with the lowest no-show likelihood, and (2) marginal analysis to identify the number of overbookings based on the no-show probabilities of the regularly-scheduled patients. We find that the summary measures of profit and cost are considerably improved with the proposed scheduling approach as well as an increase in the number of patients served due to a substantial decrease in the no-show rate. Sensitivity analysis confirms the effectiveness of the proposed dynamic scheduling framework even further.

Suggested Citation

  • Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
  • Handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05799-0
    DOI: 10.1007/s10479-023-05799-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05799-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05799-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadkarni, Sucheta & Shenoy, Prakash P., 2001. "A Bayesian network approach to making inferences in causal maps," European Journal of Operational Research, Elsevier, vol. 128(3), pages 479-498, February.
    2. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    3. Michele Samorani & Subhamoy Ganguly, 2016. "Optimal Sequencing of Unpunctual Patients in High-Service-Level Clinics," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 330-346, February.
    4. Peter A. Salzarulo & Stephen Mahar & Sachin Modi, 2016. "Beyond Patient Classification: Using Individual Patient Characteristics in Appointment Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 25(6), pages 1056-1072, June.
    5. Nan Liu, 2016. "Optimal Choice for Appointment Scheduling Window under Patient No-Show Behavior," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 128-142, January.
    6. Kazim Topuz & Brett D. Jones & Sumeyra Sahbaz & Murad Moqbel, 2021. "Methodology to combine theoretical knowledge with a data-driven probabilistic graphical model," Journal of Business Analytics, Taylor & Francis Journals, vol. 4(2), pages 125-139, July.
    7. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    8. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    9. Seung Jun Lee & Gregory R. Heim & Chelliah Sriskandarajah & Yunxia Zhu, 2018. "Outpatient Appointment Block Scheduling Under Patient Heterogeneity and Patient No†Shows," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 28-48, January.
    10. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    11. Y Huang & P Zuniga, 2012. "Dynamic overbooking scheduling system to improve patient access," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(6), pages 810-820, June.
    12. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    13. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    14. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    15. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    16. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    17. Edward J. Rising & Robert Baron & Barry Averill, 1973. "A Systems Analysis of a University-Health-Service Outpatient Clinic," Operations Research, INFORMS, vol. 21(5), pages 1030-1047, October.
    18. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    19. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    20. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    21. Gupta, Sumeet & Kim, Hee W., 2008. "Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities," European Journal of Operational Research, Elsevier, vol. 190(3), pages 818-833, November.
    22. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    23. Clifford Stein & Van-Anh Truong & Xinshang Wang, 2020. "Advance Service Reservations with Heterogeneous Customers," Management Science, INFORMS, vol. 66(7), pages 2929-2950, July.
    24. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    25. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    26. Bjorn P. Berg & Michael Murr & David Chermak & Jonathan Woodall & Michael Pignone & Robert S. Sandler & Brian T. Denton, 2013. "Estimating the Cost of No-Shows and Evaluating the Effects of Mitigation Strategies," Medical Decision Making, , vol. 33(8), pages 976-985, November.
    27. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    28. K J Glowacka & R M Henry & J H May, 2009. "A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1056-1068, August.
    29. Yang Zhan & Zheng Zhang, 2023. "A study on pre-charging strategy for appointment scheduling problem with no-shows," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 811-825, March.
    30. Bo Zeng & Ayten Turkcan & Ji Lin & Mark Lawley, 2010. "Clinic scheduling models with overbooking for patients with heterogeneous no-show probabilities," Annals of Operations Research, Springer, vol. 178(1), pages 121-144, July.
    31. Qingxia Kong & Shan Li & Nan Liu & Chung-Piaw Teo & Zhenzhen Yan, 2020. "Appointment Scheduling Under Time-Dependent Patient No-Show Behavior," Management Science, INFORMS, vol. 66(8), pages 3480-3500, August.
    32. Delen, Dursun & Topuz, Kazim & Eryarsoy, Enes, 2020. "Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition," European Journal of Operational Research, Elsevier, vol. 281(3), pages 575-587.
    33. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    34. Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
    35. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    36. Gréanne Leeftink & Gabriela Martinez & Erwin W. Hans & Mustafa Y. Sir & Kalyan S. Pasupathy, 2022. "Optimising the booking horizon in healthcare clinics considering no-shows and cancellations," International Journal of Production Research, Taylor & Francis Journals, vol. 60(10), pages 3201-3218, May.
    37. Adel Alaeddini & Kai Yang & Chandan Reddy & Susan Yu, 2011. "A probabilistic model for predicting the probability of no-show in hospital appointments," Health Care Management Science, Springer, vol. 14(2), pages 146-157, June.
    38. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    39. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    40. Abrar Mahjoob & Yousef Alfadhli & Vincent Omachonu, 2023. "Healthcare Waste and Sustainability: Implications for a Circular Economy," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    41. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    2. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    3. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    4. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    5. Cai, Yun & Song, Haiqing & Wang, Shan, 2024. "Managing appointment-based services with electronic visits," European Journal of Operational Research, Elsevier, vol. 315(3), pages 863-878.
    6. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    7. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    8. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    9. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    10. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    11. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    12. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    13. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    14. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    15. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    16. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    17. Agrawal, Deepak & Pang, Guodong & Kumara, Soundar, 2023. "Preference based scheduling in a healthcare provider network," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1318-1335.
    18. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    19. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    20. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05799-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.