Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2017.07.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
- Carriero, A. & Kapetanios, G. & Marcellino, M., 2009.
"Forecasting exchange rates with a large Bayesian VAR,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," CEPR Discussion Papers 7008, C.E.P.R. Discussion Papers.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Working Papers 634, Queen Mary University of London, School of Economics and Finance.
- A. Carriero & G. Kapetanios & M. Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Economics Working Papers ECO2008/33, European University Institute.
- Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
- Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
- Bai, Chunguang & Dhavale, Dileep & Sarkis, Joseph, 2016. "Complex investment decisions using rough set and fuzzy c-means: An example of investment in green supply chains," European Journal of Operational Research, Elsevier, vol. 248(2), pages 507-521.
- Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016.
"The study of Thai stock market across the 2008 financial crisis,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
- K. Kanjamapornkul & Richard Pinv{c}'ak & Erik Bartov{s}, 2016. "The study of Thai stock market across the 2008 financial crisis," Papers 1606.02871, arXiv.org.
- Edirisinghe, N.C.P. & Zhang, X., 2007. "Generalized DEA model of fundamental analysis and its application to portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3311-3335, November.
- R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
- Schwartz, Robert A. & Whitcomb, David K., 1977. "Evidence on the Presence and Causes of Serial Correlation in Market Model Residuals," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(2), pages 291-313, June.
- Eilat, Harel & Golany, Boaz & Shtub, Avraham, 2006. "Constructing and evaluating balanced portfolios of R&D projects with interactions: A DEA based methodology," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1018-1039, August.
- Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
- Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
- Pätäri, Eero & Leivo, Timo & Honkapuro, Samuli, 2012. "Enhancement of equity portfolio performance using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 220(3), pages 786-797.
- Pinčák, Richard & Bartoš, Erik, 2015. "With string model to time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 135-146.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sakouvogui Kekoura & Shaik Saleem & Addey Kwame Asiam, 2020. "Cluster-Adjusted DEA Efficiency in the presence of Heterogeneity: An Application to Banking Sector," Open Economics, De Gruyter, vol. 3(1), pages 50-69, January.
- Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
- Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
- Li, Xingyu & Epureanu, Bogdan I., 2020. "AI-based competition of autonomous vehicle fleets with application to fleet modularity," European Journal of Operational Research, Elsevier, vol. 287(3), pages 856-874.
- Mohammadian, Isaac & Jahangoshai Rezaee, Mustafa, 2020. "A new decomposition and interpretation of Hicks-Moorsteen productivity index for analysis of Stock Exchange companies: Case study on pharmaceutical industry," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
- Lima-Junior, Francisco Rodrigues & Carpinetti, Luiz Cesar Ribeiro, 2019. "Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks," International Journal of Production Economics, Elsevier, vol. 212(C), pages 19-38.
- Nam Hyok Kim & Feng He & Kwon Ryong Hong & Hyok-Chol Kim & Sok-Min Han, 2024. "A new common weights DEA model based on cluster analysis," Operational Research, Springer, vol. 24(2), pages 1-35, June.
- Omrani, Hashem & Valipour, Mahsa & Emrouznejad, Ali, 2021. "A novel best worst method robust data envelopment analysis: Incorporating decision makers’ preferences in an uncertain environment," Operations Research Perspectives, Elsevier, vol. 8(C).
- Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
- Adebayo Felix Adekoya & Isaac Kofi Nti & Benjamin Asubam Weyori, 2021. "Long Short-Term Memory Network for Predicting Exchange Rate of the Ghanaian Cedi," FinTech, MDPI, vol. 1(1), pages 1-19, December.
- Samira Foladi & Maghsud Solimanpur & Mustafa Jahangoshai Rezaee, 2020. "Inverse Dynamic Data Envelopment Analysis for Evaluating Faculties of University with Quasi-Fixed Inputs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(1), pages 323-347, February.
- Hemmat Esfe, Mohammad & Kamyab, Mohammad Hassan & Afrand, Masoud & Amiri, Mahmoud Kiannejad, 2018. "Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 610-624.
- Bisht, Garima & Pal, A.K., 2024. "Three-way decisions based multi-attribute decision-making with utility and loss functions," European Journal of Operational Research, Elsevier, vol. 316(1), pages 268-281.
- Jabbarzadeh, Armin & Shamsi, Meisam, 2025. "Designing a resilient and sustainable multi-feedstock bioethanol supply chain: Integration of mathematical modeling and machine learning," Applied Energy, Elsevier, vol. 377(PB).
- Yushen Kong & Micheal Owusu-Akomeah & Henry Asante Antwi & Xuhua Hu & Patrick Acheampong, 2019. "Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive Neural Network Classifier (FANNC)," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.
- Hemmat Esfe, Mohammad & Reiszadeh, Mahdi & Esfandeh, Saeed & Afrand, Masoud, 2018. "Optimization of MWCNTs (10%) – Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 731-744.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
- Azadi, Majid & Yousefi, Saeed & Farzipoor Saen, Reza & Shabanpour, Hadi & Jabeen, Fauzia, 2023. "Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis," Journal of Business Research, Elsevier, vol. 154(C).
- Liu, John S. & Lu, Wen-Min, 2010. "DEA and ranking with the network-based approach: a case of R&D performance," Omega, Elsevier, vol. 38(6), pages 453-464, December.
- Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
- Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
- Alexandre Marinho & Claudia Affonso Silva Araújo, 2021. "Using data envelopment analysis and the bootstrap method to evaluate organ transplantation efficiency in Brazil," Health Care Management Science, Springer, vol. 24(3), pages 569-581, September.
- Mehdi Toloo & Soroosh Nalchigar & Babak Sohrabi, 2018. "Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1027-1051, December.
- Youchao Tan & Yang Zhang & Roohollah Khodaverdi, 2017. "Service performance evaluation using data envelopment analysis and balance scorecard approach: an application to automotive industry," Annals of Operations Research, Springer, vol. 248(1), pages 449-470, January.
- Edirisinghe, N.C.P. & Zhang, X., 2010. "Input/output selection in DEA under expert information, with application to financial markets," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1669-1678, December.
- Bošković, Aleksandra & Krstić, Ana, 2018. "Combined Use of BSC and DEA Methods for Measuring Organizational Efficiency," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2018), Split, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Split, Croatia, 6-8 September 2018, pages 82-88, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
- Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.
- Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
- Wei Chen & Yuxi Gai & Pankaj Gupta, 2018. "Efficiency evaluation of fuzzy portfolio in different risk measures via DEA," Annals of Operations Research, Springer, vol. 269(1), pages 103-127, October.
- Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
- Valero-Carreras, Daniel & Aparicio, Juan & Guerrero, Nadia M., 2021. "Support vector frontiers: A new approach for estimating production functions through support vector machines," Omega, Elsevier, vol. 104(C).
- Bošković Aleksandra & Krstić Ana, 2020. "The Combined Use of Balanced Scorecard and Data Envelopment Analysis in the Banking Industry," Business Systems Research, Sciendo, vol. 11(1), pages 4-15, March.
- Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020.
"LASSO DEA for small and big data,"
CEPA Working Papers Series
WP092020, School of Economics, University of Queensland, Australia.
- Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP022020, School of Economics, University of Queensland, Australia.
- Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013.
"A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis,"
European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.
- Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2011. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," MPRA Paper 30951, University Library of Munich, Germany.
- Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
- Alves, André Bernardo & Wanke, Peter & Antunes, Jorge & Chen, Zhongfei, 2020. "Endogenous network efficiency, macroeconomy, and competition: Evidence from the Portuguese banking industry," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
More about this item
Keywords
Prediction; Dynamic fuzzy C-means; Self-organizing map; Data envelopment analysis; Multi-layer perceptron; Stock exchange market performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:489:y:2018:i:c:p:78-93. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.