IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v144y2022icp93-106.html
   My bibliography  Save this article

Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods

Author

Listed:
  • van Giffen, Benjamin
  • Herhausen, Dennis
  • Fahse, Tobias

Abstract

Over the last decade, the importance of machine learning increased dramatically in business and marketing. However, when machine learning is used for decision-making, bias rooted in unrepresentative datasets, inadequate models, weak algorithm designs, or human stereotypes can lead to low performance and unfair decisions, resulting in financial, social, and reputational losses. This paper offers a systematic, interdisciplinary literature review of machine learning biases as well as methods to avoid and mitigate these biases. We identified eight distinct machine learning biases, summarized these biases in the cross-industry standard process for data mining to account for all phases of machine learning projects, and outline twenty-four mitigation methods. We further contextualize these biases in a real-world case study and illustrate adequate mitigation strategies. These insights synthesize the literature on machine learning biases in a concise manner and point to the importance of human judgment for machine learning algorithms.

Suggested Citation

  • van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
  • Handle: RePEc:eee:jbrese:v:144:y:2022:i:c:p:93-106
    DOI: 10.1016/j.jbusres.2022.01.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322000881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.01.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
    2. Anja Lambrecht & Catherine Tucker, 2019. "Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads," Management Science, INFORMS, vol. 65(7), pages 2966-2981, July.
    3. Sendhil Mullainathan & Ziad Obermeyer, 2017. "Does Machine Learning Automate Moral Hazard and Error?," American Economic Review, American Economic Association, vol. 107(5), pages 476-480, May.
    4. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    5. De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
    6. Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
    7. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    8. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
    9. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    10. Guha, Abhijit & Grewal, Dhruv & Kopalle, Praveen K. & Haenlein, Michael & Schneider, Matthew J. & Jung, Hyunseok & Moustafa, Rida & Hegde, Dinesh R. & Hawkins, Gary, 2021. "How artificial intelligence will affect the future of retailing," Journal of Retailing, Elsevier, vol. 97(1), pages 28-41.
    11. Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
    12. Liu Liu & Daria Dzyabura & Natalie Mizik, 2020. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ndaka, Angella & Lassou, Philippe J.C. & Kan, Konan Anderson Seny & Fosso-Wamba, Samuel, 2024. "Toward response-able AI: A decolonial perspective to AI-enabled accounting systems in Africa," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 99(C).
    2. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    3. Graham, Byron & Bonner, Karen, 2024. "The role of institutions in early-stage entrepreneurship: An explainable artificial intelligence approach," Journal of Business Research, Elsevier, vol. 175(C).
    4. Alexandra Brintrup & George Baryannis & Ashutosh Tiwari & Svetan Ratchev & Giovanna Martinez-Arellano & Jatinder Singh, 2023. "Trustworthy, responsible, ethical AI in manufacturing and supply chains: synthesis and emerging research questions," Papers 2305.11581, arXiv.org.
    5. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    6. Ram, Pappu Kalyan & Pandey, Neeraj & Persis, Jinil, 2024. "Modeling social coupon redemption decisions of consumers in food industry: A machine learning perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    7. Krikamol Muandet, 2022. "Impossibility of Collective Intelligence," Papers 2206.02786, arXiv.org.
    8. Lennart Hofeditz & Sünje Clausen & Alexander Rieß & Milad Mirbabaie & Stefan Stieglitz, 2022. "Applying XAI to an AI-based system for candidate management to mitigate bias and discrimination in hiring," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2207-2233, December.
    9. Wallusch Jacek, 2023. "Pricing and data science: The tale of two accidentally parallel transitions," Economics and Business Review, Sciendo, vol. 9(2), pages 115-132, April.
    10. Singha, Sumanta & Arha, Himanshu & Kar, Arpan Kumar, 2023. "Healthcare analytics: A techno-functional perspective," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    11. Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    2. Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
    3. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    4. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    5. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    6. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    7. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    8. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    9. Sagarika Mishra & Michael T. Ewing & Holly B. Cooper, 2022. "Artificial intelligence focus and firm performance," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1176-1197, November.
    10. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    11. Satornino, Cinthia B. & Grewal, Dhruv & Guha, Abhijit & Schweiger, Elisa B. & Goodstein, Ronald C., 2023. "The perks and perils of artificial intelligence use in lateral exchange markets," Journal of Business Research, Elsevier, vol. 158(C).
    12. Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
    13. Wenkai Zhou & Chi Zhang & Linwan Wu & Meghana Shashidhar, 2023. "ChatGPT and marketing: Analyzing public discourse in early Twitter posts," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 693-706, December.
    14. Akter, Shahriar & Hossain, Md Afnan & Sajib, Shahriar & Sultana, Saida & Rahman, Mahfuzur & Vrontis, Demetris & McCarthy, Grace, 2023. "A framework for AI-powered service innovation capability: Review and agenda for future research," Technovation, Elsevier, vol. 125(C).
    15. Andrea Mauro & Andrea Sestino & Andrea Bacconi, 2022. "Machine learning and artificial intelligence use in marketing: a general taxonomy," Italian Journal of Marketing, Springer, vol. 2022(4), pages 439-457, December.
    16. Marilyn Giroux & Jungkeun Kim & Jacob C. Lee & Jongwon Park, 2022. "Artificial Intelligence and Declined Guilt: Retailing Morality Comparison Between Human and AI," Journal of Business Ethics, Springer, vol. 178(4), pages 1027-1041, July.
    17. Grewal, Dhruv & Guha, Abhijit & Satornino, Cinthia B. & Schweiger, Elisa B., 2021. "Artificial intelligence: The light and the darkness," Journal of Business Research, Elsevier, vol. 136(C), pages 229-236.
    18. Guha, Abhijit & Grewal, Dhruv & Kopalle, Praveen K. & Haenlein, Michael & Schneider, Matthew J. & Jung, Hyunseok & Moustafa, Rida & Hegde, Dinesh R. & Hawkins, Gary, 2021. "How artificial intelligence will affect the future of retailing," Journal of Retailing, Elsevier, vol. 97(1), pages 28-41.
    19. Manjunath Padigar & Ljubomir Pupovac & Ashish Sinha & Rajendra Srivastava, 2022. "The effect of marketing department power on investor responses to announcements of AI-embedded new product innovations," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1277-1298, November.
    20. Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:144:y:2022:i:c:p:93-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.