A simulation of factors affecting machine learning techniques: an examination of partitioning and class proportions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
- McClelland, John W. & Wetzstein, Michael E. & Musser, Wesley N., 1986. "Returns To Scale And Size In Agricultural Economics," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 11(2), pages 1-5, December.
- Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
- Ting-Peng Liang, 1992. "A Composite Approach to Inducing Knowledge for Expert Systems Design," Management Science, INFORMS, vol. 38(1), pages 1-17, January.
- Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
- William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
- de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.
- Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
- Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
- Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
- Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
- Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
- Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
- Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
- Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
- Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Pablo de Llano Monelos & Manuel RodrÃguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
- Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
- S. Balcaen & H. Ooghe, 2004.
"Alternative methodologies in studies on business failure: do they produce better results than the classical statistical methods?,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
04/249, Ghent University, Faculty of Economics and Business Administration.
- Balcaen S. & Ooghe H., 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?," Vlerick Leuven Gent Management School Working Paper Series 2004-16, Vlerick Leuven Gent Management School.
More about this item
Keywords
Machine learning Neural networks ID3 CART Recursive pactitioning Simulation;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:5:p:501-512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.