IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i2p256-281.html
   My bibliography  Save this article

A test for elliptical symmetry

Author

Listed:
  • Huffer, Fred W.
  • Park, Cheolyong

Abstract

This paper presents a statistic for testing the hypothesis of elliptical symmetry. The statistic also provides a specialized test of multivariate normality. We obtain the asymptotic distribution of this statistic under the null hypothesis of multivariate normality, and give a bootstrapping procedure for approximating the null distribution of the statistic under an arbitrary elliptically symmetric distribution. We present simulation results to examine the accuracy of the asymptotic distribution and the performance of the bootstrapping procedure. Finally, for selected alternatives, we compare the power of our test statistic with that of recently proposed tests for elliptical symmetry given by Manzotti et al. [A statistic for testing the null hypothesis of elliptical symmetry, J. Multivariate Anal. 81 (2002) 274-285] and Schott [Testing for elliptical symmetry in covariance-matrix-based analyses, Statist. Probab. Lett. 60 (2002) 395-404], and with that of the well known tests for multivariate normality of Mardia [Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970) 519-530] and Baringhaus and Henze [A consistent test for multivariate normality based on the empirical characteristic function, Metrika 35 (1988) 339-348].

Suggested Citation

  • Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:256-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00165-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hodgson, Douglas J & Vorkink, Keith P, 2003. "Efficient Estimation of Conditional Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 269-283, April.
    2. Alessandro Manzotti & Adolfo Quiroz, 2001. "Spherical harmonics in quadratic forms for testing multivariate normality," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 87-104, June.
    3. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    4. Schott, James R., 2002. "Testing for elliptical symmetry in covariance-matrix-based analyses," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 395-404, December.
    5. Zhu, Li-Xing & Neuhaus, Georg, 2003. "Conditional tests for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 284-298, February.
    6. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    7. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    8. Manzotti, A. & Pérez, Francisco J. & Quiroz, Adolfo J., 2002. "A Statistic for Testing the Null Hypothesis of Elliptical Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 274-285, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    2. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    3. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    4. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.
    5. Albisetti, Isaia & Balabdaoui, Fadoua & Holzmann, Hajo, 2020. "Testing for spherical and elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    6. Stephanie Chan & Xuan Wang & Ina Jazić & Sarah Peskoe & Yingye Zheng & Tianxi Cai, 2021. "Developing and evaluating risk prediction models with panel current status data," Biometrics, The International Biometric Society, vol. 77(2), pages 599-609, June.
    7. Sakhanenko, Lyudmila, 2008. "Testing for ellipsoidal symmetry: A comparison study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 565-581, December.
    8. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    9. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    10. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. III," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 24(4), pages 100-130.
    11. Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    12. Mark Flood & George Korenko, 2013. "Systematic Scenario Selection," Working Papers 13-02, Office of Financial Research, US Department of the Treasury.
    13. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    14. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    2. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    3. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    4. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    5. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    6. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    7. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    8. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    9. Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    10. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    11. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    12. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    13. Bruno Ebner & Norbert Henze, 2023. "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality," Statistical Papers, Springer, vol. 64(3), pages 739-752, June.
    14. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    15. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    16. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    17. Sirao Wang & Jiajuan Liang & Min Zhou & Huajun Ye, 2022. "Testing Multivariate Normality Based on F -Representative Points," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    18. A. Cabaña & E. M. Cabaña, 2003. "Tests of Normality Based on Transformed Empirical Processes," Methodology and Computing in Applied Probability, Springer, vol. 5(3), pages 309-335, September.
    19. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    20. Leucht, Anne & Neumann, Michael H., 2009. "Consistency of general bootstrap methods for degenerate U-type and V-type statistics," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1622-1633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:2:p:256-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.