IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp254-264.html
   My bibliography  Save this article

A characterization of elliptical distributions and some optimality properties of principal components for functional data

Author

Listed:
  • Boente, Graciela
  • Salibián Barrera, Matías
  • Tyler, David E.

Abstract

As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator.

Suggested Citation

  • Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:254-264
    DOI: 10.1016/j.jmva.2014.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David E. Tyler & Frank Critchley & Lutz Dümbgen & Hannu Oja, 2009. "Invariant co‐ordinate selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 549-592, June.
    2. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    3. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    4. Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
    5. Schott, James R., 2002. "Testing for elliptical symmetry in covariance-matrix-based analyses," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 395-404, December.
    6. Zhu, Li-Xing & Neuhaus, Georg, 2003. "Conditional tests for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 284-298, February.
    7. Kuwana, Yoichi & Kariya, Takeaki, 1991. "LBI tests for multivariate normality in exponential power distributions," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 117-134, October.
    8. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    9. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    3. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    4. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
    5. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    7. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    8. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    9. Dominik Poß & Dominik Liebl & Alois Kneip & Hedwig Eisenbarth & Tor D. Wager & Lisa Feldman Barrett, 2020. "Superconsistent estimation of points of impact in non‐parametric regression with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1115-1140, September.
    10. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    11. Fred Espen Benth & Giulia Di Nunno & Dennis Schroers, 2022. "Copula measures and Sklar's theorem in arbitrary dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1144-1183, September.
    12. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    13. González–Rodríguez, Gil & Colubi, Ana & González–Manteiga, Wenceslao & Febrero–Bande, Manuel, 2024. "A consistent test of equality of distributions for Hilbert-valued random elements," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    14. Park, Yeonjoo & Kim, Hyunsung & Lim, Yaeji, 2023. "Functional principal component analysis for partially observed elliptical process," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    2. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    3. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    4. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    5. Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    6. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    7. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    8. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Dürre, Alexander & Vogel, Daniel & Tyler, David E., 2014. "The spatial sign covariance matrix with unknown location," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 107-117.
    10. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    11. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    12. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    13. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    14. Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
    15. Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    16. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    17. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    19. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    20. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:254-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.