IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i5p1980-1992.html
   My bibliography  Save this article

An affine invariant multiple test procedure for assessing multivariate normality

Author

Listed:
  • Tenreiro, Carlos

Abstract

A multiple test procedure for assessing multivariate normality (MVN) is proposed. The new test combines a finite set of affine invariant test statistics for MVN through an improved Bonferroni method. The usefulness of such an approach is illustrated by a multiple test including the Mardia and BHEP (Baringhaus-Henze-Epps-Pulley) tests that are among the most recommended procedures for testing MVN. A simulation study carried out for a wide range of alternative distributions, in order to analyze the finite sample power behavior of the proposed multiple test procedure, indicates that the new test demonstrates a good overall performance against other highly recommended MVN tests.

Suggested Citation

  • Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1980-1992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00460-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    2. J. P. Royston, 1983. "Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 121-133, June.
    3. Coin, Daniele, 2008. "A goodness-of-fit test for normality based on polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2185-2198, January.
    4. Liang, Jiajuan & Tang, Man-Lai & Chan, Ping Shing, 2009. "A generalized Shapiro-Wilk W statistic for testing high-dimensional normality," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3883-3891, September.
    5. Chiu, Sung Nok & Liu, Kwong Ip, 2009. "Generalized Cramér-von Mises goodness-of-fit tests for multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3817-3834, September.
    6. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    7. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    8. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    9. Sándor Csörgő, 1989. "Consistency of some tests for multivariate normality," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 36(1), pages 107-116, December.
    10. Henze, Norbert, 1997. "Extreme smoothing and testing for multivariate normality," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 203-213, October.
    11. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    12. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    13. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    14. Fan, Yanqin, 1998. "Goodness-Of-Fit Tests Based On Kernel Density Estimators With Fixed Smoothing Parameters," Econometric Theory, Cambridge University Press, vol. 14(5), pages 604-621, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanan Song & Xuejing Zhao, 2021. "Normality Testing of High-Dimensional Data Based on Principle Component and Jarque–Bera Statistics," Stats, MDPI, vol. 4(1), pages 1-12, March.
    2. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    3. Norbert Henze & Pierre Lafaye De Micheaux & Simos G. Meintanis, 2022. "Tests for circular symmetry of complex-valued random vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 488-518, June.
    4. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    5. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    6. Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    2. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    3. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    4. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    5. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    6. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    7. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    8. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
    9. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    10. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    11. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    12. Sirao Wang & Jiajuan Liang & Min Zhou & Huajun Ye, 2022. "Testing Multivariate Normality Based on F -Representative Points," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    13. Yanan Song & Xuejing Zhao, 2021. "Normality Testing of High-Dimensional Data Based on Principle Component and Jarque–Bera Statistics," Stats, MDPI, vol. 4(1), pages 1-12, March.
    14. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    15. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    16. Epps, T. W., 1999. "Limiting behavior of the ICF test for normality under Gram-Charlier alternatives," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 175-184, April.
    17. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    18. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    19. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    20. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1980-1992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.