IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v180y2020ics0047259x20302487.html
   My bibliography  Save this article

Testing for spherical and elliptical symmetry

Author

Listed:
  • Albisetti, Isaia
  • Balabdaoui, Fadoua
  • Holzmann, Hajo

Abstract

We construct new testing procedures for spherical and elliptical symmetry based on the characterization that a random vector X with finite mean has a spherical distribution if and only if E[u⊤X|v⊤X]=0 holds for any two perpendicular vectors u and v. Our test is based on the Kolmogorov–Smirnov statistic, and its rejection region is found via the spherically symmetric bootstrap. We show the consistency of the spherically symmetric bootstrap test using a general Donsker theorem which is of some independent interest. For the case of testing for elliptical symmetry, the Kolmogorov–Smirnov statistic has an asymptotic drift term due to the estimated location and scale parameters. Therefore, an additional standardization is required in the bootstrap procedure. In a simulation study, the size and the power properties of our tests are assessed for several distributions and the performance is compared to that of several competing procedures.

Suggested Citation

  • Albisetti, Isaia & Balabdaoui, Fadoua & Holzmann, Hajo, 2020. "Testing for spherical and elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302487
    DOI: 10.1016/j.jmva.2020.104667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eaton, Morris L., 1986. "A characterization of spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 20(2), pages 272-276, December.
    2. Cacoullos, T., 2014. "Polar angle tangent vectors follow Cauchy distributions under spherical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 147-153.
    3. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    4. Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
    5. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    6. Fang, K. T. & Zhu, L. X. & Bentler, P. M., 1993. "A Necessary Test of Goodness of Fit for Sphericity," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 34-55, April.
    7. Jiajuan Liang & Kai-Tai Fang & Fred Hickernell, 2008. "Some necessary uniform tests for spherical symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 679-696, September.
    8. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    9. Berk, Robert & Hwang, Jiunn T., 1989. "Optimality of the least squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 245-254, August.
    10. Koltchinskii, V. I. & Li, Lang, 1998. "Testing for Spherical Symmetry of a Multivariate Distribution," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 228-244, May.
    11. Sakhanenko, Lyudmila, 2008. "Testing for ellipsoidal symmetry: A comparison study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 565-581, December.
    12. Manzotti, A. & Pérez, Francisco J. & Quiroz, Adolfo J., 2002. "A Statistic for Testing the Null Hypothesis of Elliptical Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 274-285, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.
    2. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    3. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    4. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    5. Claudia Klüppelberg & Gabriel Kuhn, 2009. "Copula structure analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 737-753, June.
    6. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    7. Manzotti, A. & Pérez, Francisco J. & Quiroz, Adolfo J., 2002. "A Statistic for Testing the Null Hypothesis of Elliptical Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 274-285, May.
    8. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    9. John Einmahl & Maria Gantner, 2012. "Testing for bivariate spherical symmetry," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 54-73, March.
    10. Kariya, Takeaki & Kurata, Hiroshi, 2002. "A Maximal Extension of the Gauss-Markov Theorem and Its Nonlinear Version," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 37-55, October.
    11. Gneiting, Tilmann, 1998. "On[alpha]-Symmetric Multivariate Characteristic Functions," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 131-147, February.
    12. Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    13. Derumigny, A. & Fermanian, J.-D., 2022. "Identifiability and estimation of meta-elliptical copula generators," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    14. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
    15. Quessy, Jean-François & Durocher, Martin, 2019. "The class of copulas arising from squared distributions: Properties and inference," Econometrics and Statistics, Elsevier, vol. 12(C), pages 148-166.
    16. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    17. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    18. Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    19. Francq, Christian & Jiménez Gamero, Maria Dolores & Meintanis, Simos, 2015. "Tests for sphericity in multivariate garch models," MPRA Paper 67411, University Library of Munich, Germany.
    20. Ian Ball, 2019. "Scoring Strategic Agents," Papers 1909.01888, arXiv.org, revised May 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.