IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v5y2003i3d10.1023_a1026235220018.html
   My bibliography  Save this article

Tests of Normality Based on Transformed Empirical Processes

Author

Listed:
  • A. Cabaña

    (Instituto Venezolano de Investigaciones Científicas and Universidad Simón)

  • E. M. Cabaña

    (Universidad de la República)

Abstract

The present work introduces four families of tests of normality. The tests in two of them are of the Kolmogorov–Smirnov type, and the tests of the other two are of the Cramér–von Mises type. One family of each type is focused to detect alternatives of skewness and the other one is designed to be specially sensitive to changes in kurtosis. The tests in each family depend on a parameter ℓ: for each integer ℓ, the test statistic involves the computation on the standardized sample points of the Hermite polynomials up to degree ℓ+3. The resulting tests are consistent against all alternative distributions such that at least one of their moments up to order ℓ+3 differ from the corresponding moment of the normal distribution with the same mean and variance. Therefore, a sequence of tests for samples of size n and ℓ=ℓ (n) is consistent against any nonnormal alternative, when lim n →∞ℓ(n)=∞. The performance of the proposed tests compares favorably with Shapiro–Wilk and Anderson–Darling omnibus tests, LaRiccia's focused tests, and Kallenberg and Ledwina data driven smooth tests, and the statistics can be easily computed. Hints for their computation are provided.

Suggested Citation

  • A. Cabaña & E. M. Cabaña, 2003. "Tests of Normality Based on Transformed Empirical Processes," Methodology and Computing in Applied Probability, Springer, vol. 5(3), pages 309-335, September.
  • Handle: RePEc:spr:metcap:v:5:y:2003:i:3:d:10.1023_a:1026235220018
    DOI: 10.1023/A:1026235220018
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1026235220018
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1026235220018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    2. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    3. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    4. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    5. Bruno Ebner & Norbert Henze, 2023. "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality," Statistical Papers, Springer, vol. 64(3), pages 739-752, June.
    6. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    7. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    8. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    9. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    10. Leucht, Anne & Neumann, Michael H., 2009. "Consistency of general bootstrap methods for degenerate U-type and V-type statistics," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1622-1633, September.
    11. Gutjahr, Steffen & Henze, Norbert & Folkers, Martin, 1999. "Shortcomings of Generalized Affine Invariant Skewness Measures," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 1-23, October.
    12. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    13. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
    14. Epps, T. W., 1999. "Limiting behavior of the ICF test for normality under Gram-Charlier alternatives," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 175-184, April.
    15. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    16. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    17. Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
    18. Bilodeau, M. & Lafaye de Micheaux, P., 2005. "A multivariate empirical characteristic function test of independence with normal marginals," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 345-369, August.
    19. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    20. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:5:y:2003:i:3:d:10.1023_a:1026235220018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.