IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v65y1998i2p166-180.html
   My bibliography  Save this article

Approximation of the Power of Kurtosis Test for Multinormality

Author

Listed:
  • Naito, Kanta

Abstract

In this paper we investigate performances of the test of multinormality introduced by Malkovich and Afifi. An approximation formula of the power of the test against elliptically symmetric distributions is derived. Examples which illustrate the present results are also discussed.

Suggested Citation

  • Naito, Kanta, 1998. "Approximation of the Power of Kurtosis Test for Multinormality," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 166-180, May.
  • Handle: RePEc:eee:jmvana:v:65:y:1998:i:2:p:166-180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91728-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baringhaus, L. & Henze, N., 1991. "Limit distributions for measures of multivariate skewness and kurtosis based on projections," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 51-69, July.
    2. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    2. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    2. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    3. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    4. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    5. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    6. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    7. Zhu, Li-Xing & Neuhaus, Georg, 2003. "Conditional tests for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 284-298, February.
    8. Henze, Norbert, 1997. "Extreme smoothing and testing for multivariate normality," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 203-213, October.
    9. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    10. Neuhaus, Georg & Zhu, Li-Xing, 1998. "Permutation Tests for Reflected Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 129-153, November.
    11. Annaliisa Kankainen & Sara Taskinen & Hannu Oja, 2007. "Tests of multinormality based on location vectors and scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 357-379, November.
    12. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    13. Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
    14. Kim, Namhyun, 2016. "A robustified Jarque–Bera test for multivariate normality," Economics Letters, Elsevier, vol. 140(C), pages 48-52.
    15. Tan, Ming & Fang, Hong-Bin & Tian, Guo-Liang & Wei, Gang, 2005. "Testing multivariate normality in incomplete data of small sample size," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 164-179, March.
    16. Sigut, J. & Pineiro, J. & Moreno, L. & Estevez, J. & Aguilar, R. & Marichal, R., 2005. "A large deviation approach to normality testing," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 741-756, June.
    17. M. J. Baxter & N. H. Gale, 1998. "Testing for multivariate normality via univariate tests: A case study using lead isotope ratio data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(5), pages 671-683, June.
    18. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    19. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    20. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:65:y:1998:i:2:p:166-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.