IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i1p16-227d518699.html
   My bibliography  Save this article

Normality Testing of High-Dimensional Data Based on Principle Component and Jarque–Bera Statistics

Author

Listed:
  • Yanan Song

    (School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
    School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xuejing Zhao

    (School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China)

Abstract

The testing of high-dimensional normality is an important issue and has been intensively studied in the literature, it depends on the variance–covariance matrix of the sample and numerous methods have been proposed to reduce its complexity. Principle component analysis (PCA) has been widely used in high dimensions, since it can project high-dimensional data into a lower-dimensional orthogonal space. The normality of the reduced data can then be evaluated by Jarque–Bera (JB) statistics in each principle direction. We propose a combined test statistic—the summation of one-way JB statistics upon the independence of the principle directions—to test the multivariate normality of data in high dimensions. The performance of the proposed method is illustrated by the empirical power of the simulated normal and non-normal data. Two real data examples show the validity of our proposed method.

Suggested Citation

  • Yanan Song & Xuejing Zhao, 2021. "Normality Testing of High-Dimensional Data Based on Principle Component and Jarque–Bera Statistics," Stats, MDPI, vol. 4(1), pages 1-12, March.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:16-227:d:518699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    2. Jiajuan Liang & Man-Lai Tang & Xuejing Zhao, 2019. "Testing high-dimensional normality based on classical skewness and Kurtosis with a possible small sample size," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(23), pages 5719-5732, December.
    3. Jönsson, Kristian, 2011. "A robust test for multivariate normality," Economics Letters, Elsevier, vol. 113(2), pages 199-201.
    4. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    5. N. J. H. Small, 1980. "Marginal Skewness and Kurtosis in Testing Multivariate Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 85-87, March.
    6. Chiu, Sung Nok & Liu, Kwong Ip, 2009. "Generalized Cramér-von Mises goodness-of-fit tests for multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3817-3834, September.
    7. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    8. Liang, Jiajuan & Tang, Man-Lai & Chan, Ping Shing, 2009. "A generalized Shapiro-Wilk W statistic for testing high-dimensional normality," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3883-3891, September.
    9. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Sanei & Farhad Hosseinzadeh lotfi & Mohammad Fallah & Farzad Movahedi Sobhani, 2022. "An Estimation of an Acceptable Efficiency Frontier Having an Optimum Resource Management Approach, with a Combination of the DEA-ANN-GA Technique (A Case Study of Branches of an Insurance Company)," Mathematics, MDPI, vol. 10(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    3. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    4. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    5. Kim, Namhyun, 2016. "A robustified Jarque–Bera test for multivariate normality," Economics Letters, Elsevier, vol. 140(C), pages 48-52.
    6. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    7. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    8. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    9. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
    11. Ming Zhou & Yongzhao Shao, 2014. "A powerful test for multivariate normality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 351-363, February.
    12. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    13. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    14. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    15. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    16. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    17. Chowdhury, Joydeep & Dutta, Subhajit & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2022. "Sub-dimensional Mardia measures of multivariate skewness and kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    19. Martha Misas A. & Carlos Esteban Posada P & Diego Mauricio Vásquez E, 2003. "¿Está determinado el nivel de precios por las expectativas de dinero y producto en Colombia?," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 21(43), pages 8-31, June.
    20. L. Marattin & P. Paesani & S. Salotti, 2011. "Fiscal shocks, public debt, and long-term interest rate dynamics," Working Papers wp740, Dipartimento Scienze Economiche, Universita' di Bologna.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:16-227:d:518699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.