IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v180y2020ics0047259x20302463.html
   My bibliography  Save this article

Asymptotics and practical aspects of testing normality with kernel methods

Author

Listed:
  • Makigusa, Natsumi
  • Naito, Kanta

Abstract

This paper is concerned with testing normality in a Hilbert space based on the maximum mean discrepancy. Specifically, we discuss the behavior of the test from two standpoints: asymptotics and practical aspects. Asymptotic normality of the test under a fixed alternative hypothesis is developed, which implies that the test has consistency. Asymptotic distribution of the test under a sequence of local alternatives is also derived, from which asymptotic null distribution of the test is obtained. A concrete expression for the integral kernel associated with the null distribution is derived under the use of the Gaussian kernel, allowing the implementation of a reliable approximation of the null distribution. Simulations and applications to real data sets are reported with emphasis on high-dimension low-sample size cases.

Suggested Citation

  • Makigusa, Natsumi & Naito, Kanta, 2020. "Asymptotics and practical aspects of testing normality with kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302463
    DOI: 10.1016/j.jmva.2020.104665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ducharme, Gilles R. & Lafaye de Micheaux, Pierre, 2020. "A goodness-of-fit test for elliptical distributions with diagnostic capabilities," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Annaliisa Kankainen & Sara Taskinen & Hannu Oja, 2007. "Tests of multinormality based on location vectors and scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 357-379, November.
    3. Bogdan, Malgorzata, 1999. "Data Driven Smooth Tests for Bivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 26-53, January.
    4. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    5. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    3. Alessandro Manzotti & Adolfo Quiroz, 2001. "Spherical harmonics in quadratic forms for testing multivariate normality," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 87-104, June.
    4. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Cho, Min Ho & Kurtek, Sebastian & Bharath, Karthik, 2022. "Tangent functional canonical correlation analysis for densities and shapes, with applications to multimodal imaging data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    7. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    10. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    13. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    14. Bettache, Nayel & Butucea, Cristina & Sorba, Marianne, 2022. "Fast nonasymptotic testing and support recovery for large sparse Toeplitz covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    15. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Naito, Kanta, 1998. "Approximation of the Power of Kurtosis Test for Multinormality," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 166-180, May.
    17. Manfoumbi Djonguet, Terence Kevin & Nkiet, Guy Martial, 2024. "An independence test for functional variables based on kernel normalized cross-covariance operator," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    18. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Nengxiang Ling & Lingyu Wang & Philippe Vieu, 2020. "Convergence rate of kernel regression estimation for time series data when both response and covariate are functional," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 713-732, August.
    20. Jerzy Baranowski & Katarzyna Grobler-Dębska & Edyta Kucharska, 2021. "Recognizing VSC DC Cable Fault Types Using Bayesian Functional Data Depth," Energies, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.