IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v27y2000i5p633-650.html
   My bibliography  Save this article

A test for multivariate structure

Author

Listed:
  • Fred Huffer
  • Cheolyong Park

Abstract

We present a test for detecting 'multivariate structure' in data sets. This procedure consists of transforming the data to remove the correlations, then discretizing the data and, finally, studying the cell counts in the resulting contingency table. A formal test can be performed using the usual chi-squared test statistic. We give the limiting distribution of the chi-squared statistic and also present simulation results to examine the accuracy of this limiting distribution in finite samples. Several examples show that our procedure can detect a variety of different types of structure. Our examples include data with clustering, digitized speech data, and residuals from a fitted time series model. The chi-squared statistic can also be used as a test for multivariate normality.

Suggested Citation

  • Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
  • Handle: RePEc:taf:japsta:v:27:y:2000:i:5:p:633-650
    DOI: 10.1080/02664760050076452
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760050076452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760050076452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. W. Farebrother, 1990. "The Distribution of a Quadratic Form in Normal Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 294-309, June.
    2. Romeu, J. L. & Ozturk, A., 1993. "A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 309-334, August.
    3. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    2. F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
    3. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    4. Arellano, Manuel & Hansen, Lars Peter & Sentana, Enrique, 2012. "Underidentification?," Journal of Econometrics, Elsevier, vol. 170(2), pages 256-280.
    5. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
    6. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    7. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    8. Scott, David W., 2004. "Multivariate Density Estimation and Visualization," Papers 2004,16, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    9. Naito, Kanta, 1998. "Approximation of the Power of Kurtosis Test for Multinormality," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 166-180, May.
    10. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    11. Browne, Ryan P., 2022. "Revitalizing the multivariate elliptical leptokurtic-normal distribution and its application in model-based clustering," Statistics & Probability Letters, Elsevier, vol. 190(C).
    12. Chainarong Amornbunchornvej & Elena Zheleva & Tanya Berger-Wolf, 2020. "Variable-lag Granger Causality and Transfer Entropy for Time Series Analysis," Papers 2002.00208, arXiv.org, revised Jun 2020.
    13. Henze, Norbert, 1997. "Extreme smoothing and testing for multivariate normality," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 203-213, October.
    14. Thiago G. Ramires & Luiz R. Nakamura & Ana J. Righetto & Andréa C. Konrath & Carlos A. B. Pereira, 2021. "Incorporating Clustering Techniques into GAMLSS," Stats, MDPI, vol. 4(4), pages 1-15, November.
    15. Sneek, J.M. & Smits, J., 1990. "An approximation to the distribution of quadratic forms in many normal variables," Serie Research Memoranda 0049, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Paolella, Marc S., 2003. "Computing moments of ratios of quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 313-331, March.
    17. Enrique Sentana, 2009. "The econometrics of mean-variance efficiency tests: a survey," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 65-101, November.
    18. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    19. Annaliisa Kankainen & Sara Taskinen & Hannu Oja, 2007. "Tests of multinormality based on location vectors and scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 357-379, November.
    20. Álvarez, Adolfo, 2014. "Recombining partitions from multivariate data: a clustering method on Bayes factors," DES - Working Papers. Statistics and Econometrics. WS ws140804, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. Lemos, S.V. & Salgado Junior, A.P. & Rebehy, P.C.P.W. & Carlucci, F.V. & Novi, J.C., 2021. "Framework for improving agro-industrial efficiency in renewable energy: Examining Brazilian bioenergy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:27:y:2000:i:5:p:633-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.