IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.10974.html
   My bibliography  Save this paper

Beta-Sorted Portfolios

Author

Listed:
  • Matias D. Cattaneo
  • Richard K. Crump
  • Weining Wang

Abstract

Beta-sorted portfolios -- portfolios comprised of assets with similar covariation to selected risk factors -- are a popular tool in empirical finance to analyze models of (conditional) expected returns. Despite their widespread use, little is known of their statistical properties in contrast to comparable procedures such as two-pass regressions. We formally investigate the properties of beta-sorted portfolio returns by casting the procedure as a two-step nonparametric estimator with a nonparametric first step and a beta-adaptive portfolios construction. Our framework rationalize the well-known estimation algorithm with precise economic and statistical assumptions on the general data generating process and characterize its key features. We study beta-sorted portfolios for both a single cross-section as well as for aggregation over time (e.g., the grand mean), offering conditions that ensure consistency and asymptotic normality along with new uniform inference procedures allowing for uncertainty quantification and testing of various relevant hypotheses in financial applications. We also highlight some limitations of current empirical practices and discuss what inferences can and cannot be drawn from returns to beta-sorted portfolios for either a single cross-section or across the whole sample. Finally, we illustrate the functionality of our new procedures in an empirical application.

Suggested Citation

  • Matias D. Cattaneo & Richard K. Crump & Weining Wang, 2022. "Beta-Sorted Portfolios," Papers 2208.10974, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2208.10974
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.10974
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ang, Andrew & Liu, Jun & Schwarz, Krista, 2020. "Using Stocks or Portfolios in Tests of Factor Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 709-750, May.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    4. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    5. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2015. "Regression-based estimation of dynamic asset pricing models," Journal of Financial Economics, Elsevier, vol. 118(2), pages 211-244.
    6. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    7. Connor, Gregory & Linton, Oliver, 2007. "Semiparametric estimation of a characteristic-based factor model of common stock returns," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 694-717, December.
    8. Shanken, Jay & Zhou, Guofu, 2007. "Estimating and testing beta pricing models: Alternative methods and their performance in simulations," Journal of Financial Economics, Elsevier, vol. 84(1), pages 40-86, April.
    9. Nicolae Gârleanu & Lasse Heje Pedersen, 2011. "Margin-based Asset Pricing and Deviations from the Law of One Price," The Review of Financial Studies, Society for Financial Studies, vol. 24(6), pages 1980-2022.
    10. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    11. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    12. Stefano Giglio & Dacheng Xiu, 2021. "Asset Pricing with Omitted Factors," Journal of Political Economy, University of Chicago Press, vol. 129(7), pages 1947-1990.
    13. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    14. Yong Chen & Bing Han & Jing Pan, 2021. "Sentiment Trading and Hedge Fund Returns," Journal of Finance, American Finance Association, vol. 76(4), pages 2001-2033, August.
    15. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    16. Jonathan Goldberg & Yoshio Nozawa, 2021. "Liquidity Supply in the Corporate Bond Market," Journal of Finance, American Finance Association, vol. 76(2), pages 755-796, April.
    17. Cochrane, John H, 1996. "A Cross-Sectional Test of an Investment-Based Asset Pricing Model," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 572-621, June.
    18. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    19. Kleibergen, Frank, 2009. "Tests of risk premia in linear factor models," Journal of Econometrics, Elsevier, vol. 149(2), pages 149-173, April.
    20. Fan, Zhenzhen & Londono, Juan M. & Xiao, Xiao, 2022. "Equity tail risk and currency risk premiums," Journal of Financial Economics, Elsevier, vol. 143(1), pages 484-503.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    2. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    3. Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
    4. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    5. Borup, Daniel, 2019. "Asset pricing model uncertainty," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 166-189.
    6. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2015. "Regression-based estimation of dynamic asset pricing models," Journal of Financial Economics, Elsevier, vol. 118(2), pages 211-244.
    7. Byrne, Joseph P & Ibrahim, Boulis Maher & Sakemoto, Ryuta, 2017. "The Time-Varying Risk Price of Currency Carry Trades," MPRA Paper 80788, University Library of Munich, Germany.
    8. Hahn, Jaehoon & Yoon, Heebin, 2016. "Determinants of the cross-sectional stock returns in Korea: evaluating recent empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 38(C), pages 88-106.
    9. Byrne, Joseph P. & Ibrahim, Boulis Maher & Sakemoto, Ryuta, 2022. "The time-varying risk price of currency portfolios," Journal of International Money and Finance, Elsevier, vol. 124(C).
    10. Siddhartha Chib & Simon C. Smith, 2024. "Factor Selection and Structural Breaks," Finance and Economics Discussion Series 2024-037, Board of Governors of the Federal Reserve System (U.S.).
    11. Sakemoto, Ryuta, 2019. "Currency carry trades and the conditional factor model," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 198-208.
    12. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    14. Richard T. Baillie & Fabio Calonaci & George Kapetanios, 2019. "Hierarchical Time Varying Estimation of a Multi Factor Asset Pricing Model," Working Papers 879, Queen Mary University of London, School of Economics and Finance.
    15. Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Conditional Factor Models with Instrumental and Idiosyncratic Betas," Departmental Working Papers 201711, Rutgers University, Department of Economics.
    16. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    17. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda & Melin, Olena, 2023. "Identification-robust beta pricing, spanning, mimicking portfolios, and the benchmark neutrality of catastrophe bonds," Journal of Econometrics, Elsevier, vol. 236(1).
    18. Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Characteristic Effects of Large Continuous-Time Linear Models," Papers 1711.04392, arXiv.org, revised Dec 2018.
    19. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    20. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    21. M. Hashem Pesaran & Ron P. Smith, 2021. "Factor Strengths, Pricing Errors, and Estimation of Risk Premia," CESifo Working Paper Series 8947, CESifo.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.10974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.