IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i3p455-480.html
   My bibliography  Save this article

Testing mutual independence in high dimension via distance covariance

Author

Listed:
  • Shun Yao
  • Xianyang Zhang
  • Xiaofeng Shao

Abstract

We introduce an L2‐type test for testing mutual independence and banded dependence structure for high dimensional data. The test is constructed on the basis of the pairwise distance covariance and it accounts for the non‐linear and non‐monotone dependences among the data, which cannot be fully captured by the existing tests based on either Pearson correlation or rank correlation. Our test can be conveniently implemented in practice as the limiting null distribution of the test statistic is shown to be standard normal. It exhibits excellent finite sample performance in our simulation studies even when the sample size is small albeit the dimension is high and is shown to identify non‐linear dependence in empirical data analysis successfully. On the theory side, asymptotic normality of our test statistic is shown under quite mild moment assumptions and with little restriction on the growth rate of the dimension as a function of sample size. As a demonstration of good power properties for our distance‐covariance‐based test, we further show that an infeasible version of our test statistic has the rate optimality in the class of Gaussian distributions with equal correlation.

Suggested Citation

  • Shun Yao & Xianyang Zhang & Xiaofeng Shao, 2018. "Testing mutual independence in high dimension via distance covariance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 455-480, June.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:455-480
    DOI: 10.1111/rssb.12259
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12259
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongshuai Chen & Wenwen Guo & Hengjian Cui, 2024. "On the test of covariance between two high-dimensional random vectors," Statistical Papers, Springer, vol. 65(5), pages 2687-2717, July.
    2. Tarik Bahraoui & Jean‐François Quessy, 2022. "Tests of multivariate copula exchangeability based on Lévy measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1215-1243, September.
    3. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Matsui, Muneya & Mikosch, Thomas & Roozegar, Rasool & Tafakori, Laleh, 2022. "Distance covariance for random fields," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 280-322.
    8. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Beaulieu Guillaume Boglioni & de Micheaux Pierre Lafaye & Ouimet Frédéric, 2021. "Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin," Dependence Modeling, De Gruyter, vol. 9(1), pages 424-438, January.
    10. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    11. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    12. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:455-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.