IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v193y2023ics0047259x22001130.html
   My bibliography  Save this article

Likelihood ratio tests under model misspecification in high dimensions

Author

Listed:
  • Dörnemann, Nina

Abstract

We investigate the likelihood ratio test for a large block-diagonal covariance matrix with an increasing number of blocks under the null hypothesis. While so far the likelihood ratio statistic has only been studied for normal populations, we establish that its asymptotic behavior is invariant under a much larger class of distributions. This implies robustness against model misspecification, which is common in high-dimensional regimes. Demonstrating the flexibility of our approach, we additionally establish asymptotic normality of the log-likelihood ratio test for the equality of many large sample covariance matrices under model uncertainty. A simulation study and an analysis of a data set from psychology emphasize the usefulness of our findings.

Suggested Citation

  • Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001130
    DOI: 10.1016/j.jmva.2022.105122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22001130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiti Gao & Xiao Han & Guangming Pan & Yanrong Yang, 2017. "High dimensional correlation matrices: the central limit theorem and its applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 677-693, June.
    2. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
    3. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    4. Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    5. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    6. Fang Han & Shizhe Chen & Han Liu, 2017. "Distribution-free tests of independence in high dimensions," Biometrika, Biometrika Trust, vol. 104(4), pages 813-828.
    7. Xiaodong Luo & Wei Yann Tsai, 2012. "A proportional likelihood ratio model," Biometrika, Biometrika Trust, vol. 99(1), pages 211-222.
    8. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    9. Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
    10. Lemonte, Artur J., 2013. "On the gradient statistic under model misspecification," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 390-398.
    11. Jiang, Hui & Wang, Shaochen, 2017. "Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 57-69.
    12. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    13. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    14. Yang, Xinxin & Zheng, Xinghua & Chen, Jiaqi, 2021. "Testing high-dimensional covariance matrices under the elliptical distribution and beyond," Journal of Econometrics, Elsevier, vol. 221(2), pages 409-423.
    15. Anatolyev, Stanislav & Yaskov, Pavel, 2017. "Asymptotics Of Diagonal Elements Of Projection Matrices Under Many Instruments/Regressors," Econometric Theory, Cambridge University Press, vol. 33(3), pages 717-738, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    3. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    4. Bai, Yansong & Zhang, Yong & Liu, Congmin, 2023. "Moderate deviation principle for likelihood ratio test in multivariate linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
    7. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    8. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    9. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    10. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    11. Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018. "Testing for breaks in the weighting matrix," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
    12. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    13. Peng Sun & Yincai Tang & Mingxiang Cao, 2022. "Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    14. Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
    15. Zhou, Bu & Guo, Jia, 2017. "A note on the unbiased estimator of Σ2," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 141-146.
    16. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    17. Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
    18. Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
    19. Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.
    20. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.