IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i1d10.1007_s11749-022-00842-x.html
   My bibliography  Save this article

Block-diagonal test for high-dimensional covariance matrices

Author

Listed:
  • Jiayu Lai

    (Northeast Normal University)

  • Xiaoyi Wang

    (Beijing Normal University)

  • Kaige Zhao

    (Northeast Normal University)

  • Shurong Zheng

    (Northeast Normal University)

Abstract

The structure testing of a high-dimensional covariance matrix plays an important role in financial stock analyses, genetic series analyses, and many other fields. Testing that the covariance matrix is block-diagonal under the high-dimensional setting is the main focus of this paper. Several test procedures that rely on normality assumptions, two-diagonal block assumptions, or sub-block dimensionality assumptions have been proposed to tackle this problem. To relax these assumptions, we develop a test framework based on U-statistics, and the asymptotic distributions of the U-statistics are established under the null and local alternative hypotheses. Moreover, a test approach is developed for alternatives with different sparsity levels. Finally, both a simulation study and real data analysis demonstrate the performance of our proposed methods.

Suggested Citation

  • Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:1:d:10.1007_s11749-022-00842-x
    DOI: 10.1007/s11749-022-00842-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-022-00842-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-022-00842-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatjana Pavlenko & Anders Björkström & Annika Tillander, 2012. "Covariance structure approximation via gLasso in high-dimensional supervised classification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1643-1666, January.
    2. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    3. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
    4. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    5. Emilie Devijver & Mélina Gallopin, 2018. "Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 306-314, January.
    6. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    7. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    8. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    9. Xiao, Han & Wu, Wei Biao, 2013. "Asymptotic theory for maximum deviations of sample covariance matrix estimates," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2899-2920.
    10. Srivastava, Muni S. & Reid, N., 2012. "Testing the structure of the covariance matrix with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 156-171.
    11. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    12. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    13. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    14. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    15. Lin, Zhengyan & Xiang, Yanbiao, 2008. "A hypothesis test for independence of sets of variates in high dimensions," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2939-2946, December.
    16. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    17. Weiping Zhang & Baisuo Jin & Zhidong Bai, 2021. "Learning block structures in U-statistic-based matrices [Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis]," Biometrika, Biometrika Trust, vol. 108(4), pages 933-946.
    18. Weiming Li & Jianfeng Yao, 2018. "On structure testing for component covariance matrices of a high dimensional mixture," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 293-318, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    2. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    3. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    4. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    5. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
    6. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    7. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    8. Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    9. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    10. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    11. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    12. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    13. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    14. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    15. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "Testing for independence of high-dimensional variables: ρV-coefficient based approach," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    16. Peng, Hanxiang & Schick, Anton, 2018. "Asymptotic normality of quadratic forms with random vectors of increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 22-39.
    17. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    18. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    19. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    20. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:1:d:10.1007_s11749-022-00842-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.