IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i6p1319-1329.html
   My bibliography  Save this article

Testing the equality of several covariance matrices with fewer observations than the dimension

Author

Listed:
  • Srivastava, Muni S.
  • Yanagihara, Hirokazu

Abstract

For normally distributed data from the k populations with mxm covariance matrices [Sigma]1,...,[Sigma]k, we test the hypothesis H:[Sigma]1=...=[Sigma]k vs the alternative A[not equal to]H when the number of observations Ni, i=1,...,k from each population are less than or equal to the dimension m, Ni

Suggested Citation

  • Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:6:p:1319-1329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00241-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    2. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    3. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    4. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    5. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    6. Wessel N. Wieringen & Gwenaël G. R. Leday, 2024. "Ridge-type covariance and precision matrix estimators of the multivariate normal distribution," Statistical Papers, Springer, vol. 65(9), pages 5835-5849, December.
    7. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    8. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    9. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    10. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    11. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    12. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    13. Jianghao Li & Shizhe Hong & Zhenzhen Niu & Zhidong Bai, 2025. "Test for high-dimensional linear hypothesis of mean vectors via random integration," Statistical Papers, Springer, vol. 66(1), pages 1-34, February.
    14. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    15. Huyen Pham & Xiaoli Wei & Chao Zhou, 2018. "Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach," Papers 1809.01464, arXiv.org, revised Dec 2021.
    16. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    17. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    18. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    19. Ben R. Craig & Margherita Giuzio & Sandra Paterlini, 2019. "The Effect of Possible EU Diversification Requirements on the Risk of Banks’ Sovereign Bond Portfolios," Working Papers 19-12, Federal Reserve Bank of Cleveland.
    20. Tri-Dzung Nguyen & Roy Welsch, 2010. "Outlier detection and robust covariance estimation using mathematical programming," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 301-334, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:6:p:1319-1329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.