IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v194y2023ics0047259x22001300.html
   My bibliography  Save this article

Moderate deviation principle for likelihood ratio test in multivariate linear regression model

Author

Listed:
  • Bai, Yansong
  • Zhang, Yong
  • Liu, Congmin

Abstract

Consider a multivariate linear regression model where the sample size is n and the dimensions of the predictors and the responses are p and m, respectively. We know that the limiting distribution of the likelihood ratio test (LRT) in multivariate linear regressions is different in the case of finite and high dimensions. In traditional multivariate analysis, when the dimension parameters (p,m) are fixed, the limiting distribution of the LRT is a χ2 distribution. However, in the high-dimensional setting, the χ2 approximation to the LRT may be invalid. In this paper, based on He et al. (2021), we give the moderate deviation principle (MDP) results for the LRT in a high dimensional setting, where the dimension parameters (p,m) are allowed to increase with the sample size n. The performance of the numerical simulation confirms our results.

Suggested Citation

  • Bai, Yansong & Zhang, Yong & Liu, Congmin, 2023. "Moderate deviation principle for likelihood ratio test in multivariate linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22001300
    DOI: 10.1016/j.jmva.2022.105139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22001300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
    2. Jurecková, J. & Kallenberg, W. C. M. & Veraverbeke, N., 1988. "Moderate and Cramer-type large deviation theorems for M-estimators," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 191-199, February.
    3. Srivastava, Muni S. & Fujikoshi, Yasunori, 2006. "Multivariate analysis of variance with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1927-1940, October.
    4. Shaoting Li & Jiahua Chen & Jianhua Guo & Bing-Yi Jing & Shui-Ying Tsang & Hong Xue, 2015. "Likelihood Ratio Test for Multi-Sample Mixture Model and Its Application to Genetic Imprinting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 867-877, June.
    5. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    6. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    7. Jiang, Hui & Wang, Shaochen, 2017. "Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 57-69.
    8. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    9. Jin Tang & Yehua Li & Yongtao Guan, 2016. "Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 736-747, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    2. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    4. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    5. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    6. Huiqin Li & Jiang Hu & Zhidong Bai & Yanqing Yin & Kexin Zou, 2017. "Test on the linear combinations of mean vectors in high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 188-208, March.
    7. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Lixiu Wu & Jiang Hu, 2024. "Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 579-615, August.
    9. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    10. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    11. Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
    12. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    13. Zhou, Bu & Guo, Jia, 2017. "A note on the unbiased estimator of Σ2," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 141-146.
    14. Jiang, Hui & Wang, Shaochen, 2017. "Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 57-69.
    15. Yamada, Takayuki & Himeno, Tetsuto, 2015. "Testing homogeneity of mean vectors under heteroscedasticity in high-dimension," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 7-27.
    16. Yinqiu He & Zi Wang & Gongjun Xu, 2021. "A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 442-463, June.
    17. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    18. Banzato, Erika & Chiogna, Monica & Djordjilović, Vera & Risso, Davide, 2023. "A Bartlett-type correction for likelihood ratio tests with application to testing equality of Gaussian graphical models," Statistics & Probability Letters, Elsevier, vol. 193(C).
    19. Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
    20. Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:194:y:2023:i:c:s0047259x22001300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.