IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i4p813-828..html
   My bibliography  Save this article

Distribution-free tests of independence in high dimensions

Author

Listed:
  • Fang Han
  • Shizhe Chen
  • Han Liu

Abstract

SummaryWe consider the testing of mutual independence among all entries in a $d$-dimensional random vector based on $n$ independent observations. We study two families of distribution-free test statistics, which include Kendall’s tau and Spearman’s rho as important examples. We show that under the null hypothesis the test statistics of these two families converge weakly to Gumbel distributions, and we propose tests that control the Type I error in the high-dimensional setting where $d >n$. We further show that the two tests are rate-optimal in terms of power against sparse alternatives and that they outperform competitors in simulations, especially when $d$ is large.

Suggested Citation

  • Fang Han & Shizhe Chen & Han Liu, 2017. "Distribution-free tests of independence in high dimensions," Biometrika, Biometrika Trust, vol. 104(4), pages 813-828.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:813-828.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx050
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zeyu & Wang, Cheng, 2022. "Limiting spectral distribution of large dimensional Spearman’s rank correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    2. Karch, Julian D. & Perez-Alonso, Andres F. & Bergsma, Wicher P., 2024. "Beyond Pearson’s correlation: modern nonparametric independence tests for psychological research," LSE Research Online Documents on Economics 124587, London School of Economics and Political Science, LSE Library.
    3. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    4. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    6. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    7. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:813-828.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.