IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i2p379-405.html
   My bibliography  Save this article

Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables

Author

Listed:
  • Ke-Hai Yuan
  • Yubin Tian
  • Hirokazu Yanagihara

Abstract

Survey data typically contain many variables. Structural equation modeling (SEM) is commonly used in analyzing such data. The most widely used statistic for evaluating the adequacy of a SEM model is T ML , a slight modification to the likelihood ratio statistic. Under normality assumption, T ML approximately follows a chi-square distribution when the number of observations (N) is large and the number of items or variables (p) is small. However, in practice, p can be rather large while N is always limited due to not having enough participants. Even with a relatively large N, empirical results show that T ML rejects the correct model too often when p is not too small. Various corrections to T ML have been proposed, but they are mostly heuristic. Following the principle of the Bartlett correction, this paper proposes an empirical approach to correct T ML so that the mean of the resulting statistic approximately equals the degrees of freedom of the nominal chi-square distribution. Results show that empirically corrected statistics follow the nominal chi-square distribution much more closely than previously proposed corrections to T ML , and they control type I errors reasonably well whenever N≥max(50,2p). The formulations of the empirically corrected statistics are further used to predict type I errors of T ML as reported in the literature, and they perform well. Copyright The Psychometric Society 2015

Suggested Citation

  • Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:379-405
    DOI: 10.1007/s11336-013-9386-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9386-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9386-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakaki, Hirofumi & Eguchi, Shinto & Fujikoshi, Yasunori, 1990. "A class of tests for a general covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 313-325, February.
    2. Kano, Yutaka, 1992. "Robust statistics for test-of-independence and related structural models," Statistics & Probability Letters, Elsevier, vol. 15(1), pages 21-26, September.
    3. Masanori Ichikawa & Sadanori Konishi, 1995. "Application of the bootstrap methods in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 77-93, March.
    4. A. Mooijaart & P.M. Bentler, 1991. "Robustness of normal theory statistics in structural equation models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(2), pages 159-171, June.
    5. Satorra, Albert & Bentler, Peter M., 1990. "Model conditions for asymptotic robustness in the analysis of linear relations," Computational Statistics & Data Analysis, Elsevier, vol. 10(3), pages 235-249, December.
    6. James Anderson & David Gerbing, 1984. "The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 155-173, June.
    7. Fujikoshi, Yasunori, 2000. "Transformations with Improved Chi-Squared Approximations," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 249-263, February.
    8. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    9. Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
    10. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    11. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mai, Robert & Niemand, Thomas & Kraus, Sascha, 2021. "A tailored-fit model evaluation strategy for better decisions about structural equation models," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Hayakawa, Kazuhiko, 2024. "Recent development of covariance structure analysis in economics," Econometrics and Statistics, Elsevier, vol. 29(C), pages 31-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Ke-Hai & Bentler, Peter M., 2005. "Asymptotic robustness of the normal theory likelihood ratio statistic for two-level covariance structure models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 328-343, June.
    2. Ke-Hai Yuan & Peter M. Bentler, 2017. "Improving the convergence rate and speed of Fisher-scoring algorithm: ridge and anti-ridge methods in structural equation modeling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 571-597, June.
    3. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    4. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    5. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    6. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    7. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    8. Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018. "Testing for breaks in the weighting matrix," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
    9. Siotani, Minoru & Wakaki, Hirofumi, 2006. "Contributions to multivariate analysis by Professor Yasunori Fujikoshi," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1914-1926, October.
    10. Yanagihara, Hirokazu, 2007. "A family of estimators for multivariate kurtosis in a nonnormal linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 1-29, January.
    11. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    12. Peng Sun & Yincai Tang & Mingxiang Cao, 2022. "Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    13. Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
    14. Brumm, Harold J, 2000. "Inflation and Central Bank Independence: Conventional Wisdom Redux," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(4), pages 807-819, November.
    15. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    16. Ke-Hai Yuan & Peter M. Bentler & Wei Zhang, 2005. "The Effect of Skewness and Kurtosis on Mean and Covariance Structure Analysis," Sociological Methods & Research, , vol. 34(2), pages 240-258, November.
    17. Terje Skjerpen, 2008. "Engel elasticities, pseudo-maximum likelihood estimation and bootstrapped standard errors. A case study," Discussion Papers 532, Statistics Norway, Research Department.
    18. Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
    19. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    20. Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:2:p:379-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.