Likelihood ratio tests for many groups in high dimensions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2020.104605
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dette, Holger & Tomecki, Dominik, 2019. "Determinants of block Hankel matrices for random matrix-valued measures," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5200-5235.
- Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
- Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
- Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
- A. M. Hanea & G. F. Nane, 2018. "The asymptotic distribution of the determinant of a random correlation matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(1), pages 14-33, February.
- Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
- Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
- Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
- Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
- Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Loubaton, Philippe & Rosuel, Alexis & Vallet, Pascal, 2023. "On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023.
"Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?,"
Finance Research Letters, Elsevier, vol. 54(C).
- Taras Bodnar & Nestor Parolya & Erik Thors'en, 2021. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Papers 2111.12532, arXiv.org.
- Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
- Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Gusakova, Anna & Heiny, Johannes & Thäle, Christoph, 2023. "The volume of random simplices from elliptical distributions in high dimension," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 357-382.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
- Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
- Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
- Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
- Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
- Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018.
"Testing for breaks in the weighting matrix,"
Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
- Ana Angulo & Peter Burridge & Jes�s Mur, 2017. "Testing for breaks in the weighting matrix," Documentos de Trabajo dt2017-01, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
- Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
- Peng Sun & Yincai Tang & Mingxiang Cao, 2022. "Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
- Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
- Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
- Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
- Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.
- Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
- Xie, Jichun & Kang, Jian, 2017. "High-dimensional tests for functional networks of brain anatomic regions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 70-88.
- Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
- Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
- Harrar, Solomon W. & Kong, Xiaoli, 2016. "High-dimensional multivariate repeated measures analysis with unequal covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 1-21.
- Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
More about this item
Keywords
High-dimensional inference; Likelihood ratio test;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x1930346x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.