IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i1p211-222.html
   My bibliography  Save this article

A proportional likelihood ratio model

Author

Listed:
  • Xiaodong Luo
  • Wei Yann Tsai

Abstract

We propose a semiparametric proportional likelihood ratio model which is particularly suitable for modelling a nonlinear monotonic relationship between the outcome variable and a covariate. This model extends the generalized linear model by leaving the distribution unspecified, and has a strong connection with semiparametric models such as the selection bias model (Gilbert et al., 1999), the density ratio model (Qin, 1998; Fokianos & Kaimi, 2006), the single-index model (Ichimura, 1993) and the exponential tilt regression model (Rathouz & Gao, 2009). A maximum likelihood estimator is obtained for the new model and its asymptotic properties are derived. An example and simulation study illustrate the use of the model. Copyright 2012, Oxford University Press.

Suggested Citation

  • Xiaodong Luo & Wei Yann Tsai, 2012. "A proportional likelihood ratio model," Biometrika, Biometrika Trust, vol. 99(1), pages 211-222.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:211-222
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr060
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weibin Zhong & Guoqing Diao, 2023. "Joint semiparametric models for case‐cohort designs," Biometrics, The International Biometric Society, vol. 79(3), pages 1959-1971, September.
    2. Weibin Zhong & Guoqing Diao, 2023. "Semiparametric Density Ratio Model for Survival Data with a Cure Fraction," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 217-241, April.
    3. Bhaskar Bhattacharya & Mohammad Al-talib, 2017. "A minimum relative entropy based correlation model between the response and covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1095-1118, September.
    4. Archer Gong Zhang & Jiahua Chen, 2023. "Optimal Estimation under a Semiparametric Density Ratio Model," Papers 2309.09103, arXiv.org.
    5. Marchese, Scott & Diao, Guoqing, 2017. "Density ratio model for multivariate outcomes," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 249-261.
    6. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    7. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:211-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.