IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v204y2024ics0047259x24000617.html
   My bibliography  Save this article

Two-sample test for high-dimensional covariance matrices: A normal-reference approach

Author

Listed:
  • Wang, Jingyi
  • Zhu, Tianming
  • Zhang, Jin-Ting

Abstract

Testing the equality of the covariance matrices of two high-dimensional samples is a fundamental inference problem in statistics. Several tests have been proposed but they are either too liberal or too conservative when the required assumptions are not satisfied which attests that they are not always applicable in real data analysis. To overcome this difficulty, a normal-reference test is proposed and studied in this paper. It is shown that under some regularity conditions and the null hypothesis, the proposed test statistic and a chi-squared-type mixture have the same limiting distribution. It is then justified to approximate the null distribution of the proposed test statistic using that of the chi-squared-type mixture. The distribution of the chi-squared-type mixture can be well approximated using a three-cumulant matched chi-squared-approximation with its approximation parameters consistently estimated from the data. The asymptotic power of the proposed test under a local alternative is also established. Simulation studies and a real data example demonstrate that the proposed test works well in general scenarios and outperforms the existing competitors substantially in terms of size control.

Suggested Citation

  • Wang, Jingyi & Zhu, Tianming & Zhang, Jin-Ting, 2024. "Two-sample test for high-dimensional covariance matrices: A normal-reference approach," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000617
    DOI: 10.1016/j.jmva.2024.105354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.