IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v76y2013i6p847-855.html
   My bibliography  Save this article

An exact test for a column of the covariance matrix based on a single observation

Author

Listed:
  • Taras Bodnar
  • Arjun Gupta

Abstract

In this paper, we derive an exact test for a column of the covariance matrix. The test statistic is calculated by using a single observation. The exact distributions of the test statistic are derived under both the null and alternative hypotheses. We also obtain an analytical expression of the power function of the test for the equality of a column of the covariance matrix to a given vector. It is shown that the information contained in a single vector is large enough to ensure a good performance of the test. Moreover, the suggested test can be applied for time-dependent multivariate Gaussian processes. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:6:p:847-855
    DOI: 10.1007/s00184-012-0419-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-012-0419-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-012-0419-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bodnar, Taras & Gupta, Arjun K., 2009. "An identity for multivariate elliptically contoured matrix distribution," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1327-1330, May.
    2. Arjun Gupta & Jin Xu, 2006. "On Some Tests of the Covariance Matrix Under General Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 101-114, March.
    3. Amadou Sarr & Arjun Gupta & Anwar Joarder, 2009. "Estimation of the precision matrix of multivariate Pearson type II model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 31-44, January.
    4. Bodnar, Olha & Bodnar, Taras & Okhrin, Yarema, 2009. "Surveillance of the covariance matrix based on the properties of the singular Wishart distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3372-3385, July.
    5. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    6. Sarr, Amadou & Gupta, Arjun K., 2009. "Estimation of the precision matrix of multivariate Kotz type model," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 742-752, April.
    7. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    8. Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
    9. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    10. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    11. Gupta, A. K. & Sheena, Y. & Fujikoshi, Y., 2005. "Estimation of the eigenvalues of noncentrality parameter matrix in noncentral Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    2. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    3. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    4. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
    5. Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
    6. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    7. Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.
    8. Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018. "Testing for breaks in the weighting matrix," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
    9. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    10. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    11. Gupta, Arjun K. & Bodnar, Taras, 2014. "An exact test about the covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 176-189.
    12. Peng Sun & Yincai Tang & Mingxiang Cao, 2022. "Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    13. Shimizu, Koki & Hashiguchi, Hiroki, 2021. "Heterogeneous hypergeometric functions with two matrix arguments and the exact distribution of the largest eigenvalue of a singular beta-Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    14. Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
    15. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
    16. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    17. Bodnar, Taras & Mazur, Stepan & Muhinyuza, Stanislas & Parolya, Nestor, 2017. "On the product of a singular Wishart matrix and a singular Gaussian vector in high dimensions," Working Papers 2017:7, Örebro University, School of Business.
    18. Dette, Holger & Dörnemann, Nina, 2020. "Likelihood ratio tests for many groups in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    19. Harrar, Solomon W. & Kong, Xiaoli, 2016. "High-dimensional multivariate repeated measures analysis with unequal covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 1-21.
    20. Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:6:p:847-855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.