IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4095-4105.html
   My bibliography  Save this article

Robust testing in the logistic regression model

Author

Listed:
  • Bianco, Ana M.
  • Martínez, Elena

Abstract

We are interested in testing hypotheses that concern the parameter of a logistic regression model. A robust Wald-type test based on a weighted Bianco and Yohai [ Bianco, A.M., Yohai, V.J., 1996. Robust estimation in the logistic regression model. In: H. Rieder (Ed) Robust Statistics, Data Analysis, and Computer Intensive Methods In: Lecture Notes in Statistics, vol. 109, Springer Verlag, New York, pp. 17-34] estimator, as implemented by Croux and Haesbroeck [Croux, C., Haesbroeck, G., 2003. Implementing the Bianco and Yohai estimator for logistic regression. Computational Statististics and Data Analysis 44, 273-295], is proposed. The asymptotic distribution of the test statistic is derived. We carry out an empirical study to get a further insight into the stability of the p-value. Finally, a Monte Carlo study is performed to investigate the stability of both the level and the power of the test, for different choices of the weight function.

Suggested Citation

  • Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4095-4105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00163-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Flandre, Cécile & Haesbroeck, Gentiane, 2002. "The breakdown behavior of the maximum likelihood estimator in the logistic regression model," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 377-386, December.
    2. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    3. Howard D. Bondell, 2005. "Minimum distance estimation for the logistic regression model," Biometrika, Biometrika Trust, vol. 92(3), pages 724-731, September.
    4. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Jia‐Yi Kam & Siew Yean Tham, 2022. "Barriers to e‐commerce adoption: evidence from the retail and food and beverage sectors in Malaysia," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 36(2), pages 32-51, November.
    2. Victoria I. Audu & Goodness C. Aye, 2014. "The effects of improved maize technology on household welfare in Buruku, Benue State, Nigeria," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-10, December.
    3. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    4. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    5. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Robust tests in generalized linear models with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 80-97.
    6. Mingyue Li & Pujie Zhao & Lianbei Wu & Kai Chen, 2021. "Effects of Value Perception, Environmental Regulation and Their Interaction on the Improvement of Herdsmen’s Grassland Ecological Policy Satisfaction," IJERPH, MDPI, vol. 18(6), pages 1-23, March.
    7. Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
    8. Ana Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2011. "Asymptotic behavior of robust estimators in partially linear models with missing responses: the effect of estimating the missing probability on the simplified marginal estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 524-548, November.
    9. Elena Castilla & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2021. "Robust semiparametric inference for polytomous logistic regression with complex survey design," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 701-734, September.
    10. Erika SPUCHLAKOVA & Maria KOVACOVA, 2017. "Logistic Regression As A Tool For Determination Of The Probability Of Default For Enterprises," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 16(2), pages 41-47.
    11. Shittu, Ekundayo & Weigelt, Carmen, 2022. "Accessibility in sustainability transitions: U.S. electric utilities’ deployment of solar," Energy Policy, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
    2. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    3. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    4. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    5. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    6. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Robust tests in generalized linear models with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 80-97.
    7. Dries Cornilly & Lise Tubex & Stefan Van Aelst & Tim Verdonck, 2024. "Robust and sparse logistic regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 663-679, September.
    8. Cizek, P., 2005. "Trimmed Likelihood-based Estimation in Binary Regression Models," Other publications TiSEM 8b789cab-97b8-451f-b37c-9, Tilburg University, School of Economics and Management.
    9. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 209-226.
    10. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    11. Bellio, Ruggero, 2007. "Algorithms for bounded-influence estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2531-2541, February.
    12. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    13. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    14. Bianco, Ana M. & Boente, Graciela & Sombielle, Susana, 2011. "Robust estimation for nonparametric generalized regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1986-1994.
    15. Giulia Romano & Nicola Salvati & Andrea Guerrini, 2014. "Factors Affecting Water Utility Companies’ Decision to Promote the Reduction of Household Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5491-5505, December.
    16. Andrea A. Naghi & Máté Váradi & Mikhail Zhelonkin, 2021. "Robust Estimation of Probit Models with Endogeneity," Tinbergen Institute Discussion Papers 21-004/III, Tinbergen Institute.
    17. Miron, Julien & Poilane, Benjamin & Cantoni, Eva, 2022. "Robust polytomous logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    18. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    19. Fiaschi, Davide & Giuliani, Elisa & Nieri, Federica & Salvati, Nicola, 2020. "How bad is your company? Measuring corporate wrongdoing beyond the magic of ESG metrics," Business Horizons, Elsevier, vol. 63(3), pages 287-299.
    20. Ricardo A. Maronna & Victor J. Yohai, 2021. "Optimal robust estimators for families of distributions on the integers," Statistical Papers, Springer, vol. 62(5), pages 2269-2281, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4095-4105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.