IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i9p2056-2072.html
   My bibliography  Save this article

Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach

Author

Listed:
  • Abhik Ghosh
  • Ayanendranath Basu

Abstract

The density power divergence (DPD) measure, defined in terms of a single parameter α , has proved to be a popular tool in the area of robust estimation [1]. Recently, Ghosh and Basu [5] rigorously established the asymptotic properties of the MDPDEs in case of independent non-homogeneous observations. In this paper, we present an extensive numerical study to describe the performance of the method in the case of linear regression, the most common setup under the case of non-homogeneous data. In addition, we extend the existing methods for the selection of the optimal robustness tuning parameter from the case of independent and identically distributed (i.i.d.) data to the case of non-homogeneous observations. Proper selection of the tuning parameter is critical to the appropriateness of the resulting analysis. The selection of the optimal robustness tuning parameter is explored in the context of the linear regression problem with an extensive numerical study involving real and simulated data.

Suggested Citation

  • Abhik Ghosh & Ayanendranath Basu, 2015. "Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2056-2072, September.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:9:p:2056-2072
    DOI: 10.1080/02664763.2015.1016901
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1016901
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1016901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Castilla & N. Martín & L. Pardo & K. Zografos, 2021. "Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator," Statistical Papers, Springer, vol. 62(2), pages 1003-1041, April.
    2. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    3. Elena Castilla & Nirian Martín & Leandro Pardo, 2018. "Minimum phi-divergence estimators for multinomial logistic regression with complex sample design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 381-411, July.
    4. Taranga Mukherjee & Abhijit Mandal & Ayanendranath Basu, 2019. "The B-exponential divergence and its generalizations with applications to parametric estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 241-257, June.
    5. Elena Castilla & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2021. "Robust semiparametric inference for polytomous logistic regression with complex survey design," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 701-734, September.
    6. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:9:p:2056-2072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.