IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p203-212.html
   My bibliography  Save this article

Testing in generalized partially linear models: A robust approach

Author

Listed:
  • Boente, Graciela
  • Cao, Ricardo
  • González Manteiga, Wenceslao
  • Rodriguez, Daniela

Abstract

In this paper, we introduce a family of robust statistics which allow to decide between a parametric model and a semiparametric one. More precisely, under a generalized partially linear model, i.e., when the observations satisfy yi|(xi,ti)∼F(⋅,μi) with μi=H(η(ti)+xit β) and H a known link function, we want to test H0:η(t)=α+γt against H1:η is a nonlinear smooth function. A general approach which includes robust estimators based on a robustified deviance or a robustified quasi-likelihood is considered. The asymptotic behavior of the test statistic under the null hypothesis is obtained.

Suggested Citation

  • Boente, Graciela & Cao, Ricardo & González Manteiga, Wenceslao & Rodriguez, Daniela, 2013. "Testing in generalized partially linear models: A robust approach," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 203-212.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:203-212
    DOI: 10.1016/j.spl.2012.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    2. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    3. Ana Bianco & Graciela Boente & Elena Martínez, 2006. "Robust Tests in Semiparametric Partly Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 435-450, September.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    6. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    7. Hong‐Tu Zhu & Heping Zhang, 2004. "Hypothesis testing in mixture regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 3-16, February.
    8. Wang, Lan & Qu, Annie, 2007. "Robust Tests in Regression Models With Omnibus Alternatives and Bounded Influence," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 347-358, March.
    9. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boente, Graciela & Pardo-Fernández, Juan Carlos, 2016. "Robust testing for superiority between two regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 151-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    2. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    3. Graciela Boente & Daniela Rodriguez, 2012. "Robust estimates in generalized partially linear single-index models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 386-411, June.
    4. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    5. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    6. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    7. Bianco, Ana M. & Spano, Paula M., 2017. "Robust estimation in partially linear errors-in-variables models," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 46-64.
    8. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.
    9. You, Jinhong & Zhou, Xian, 2005. "The law of iterated logarithm of estimators for partially linear panel data models," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 267-279, December.
    10. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    11. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    13. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    14. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    15. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    16. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    17. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    18. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    19. Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
    20. Song, Lixin & Zhao, Yue & Wang, Xiaoguang, 2010. "Sieve least squares estimation for partially nonlinear models," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1271-1283, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:203-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.