IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i10p2571-2586.html
   My bibliography  Save this article

A multivariate version of Hoeffding's Phi-Square

Author

Listed:
  • Gaißer, Sandra
  • Ruppert, Martin
  • Schmid, Friedrich

Abstract

A multivariate measure of association is proposed, which extends the bivariate copula-based measure Phi-Square introduced by Hoeffding [22]. We discuss its analytical properties and calculate its explicit value for some copulas of simple form; a simulation procedure to approximate its value is provided otherwise. A nonparametric estimator for multivariate Phi-Square is derived and its asymptotic behavior is established based on the weak convergence of the empirical copula process both in the case of independent observations and dependent observations from strictly stationary strong mixing sequences. The asymptotic variance of the estimator can be estimated by means of nonparametric bootstrap methods. For illustration, the theoretical results are applied to financial asset return data.

Suggested Citation

  • Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2571-2586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00153-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    2. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    3. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    4. Fermanian, Jean-David & Scaillet, Olivier, 2003. "Nonparametric estimation of copulas for time series," Working Papers unige:41797, University of Geneva, Geneva School of Economics and Management.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    6. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    7. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    8. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    9. Harry Joe, 1989. "Estimation of entropy and other functionals of a multivariate density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(4), pages 683-697, December.
    10. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate extensions of Spearman's rho and related statistics," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 407-416, February.
    11. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    12. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    13. Friedrich Schmid & Rafael Schmidt, 2007. "Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 66(3), pages 323-354, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    2. De Keyser, Steven & Gijbels, Irène, 2024. "Parametric dependence between random vectors via copula-based divergence measures," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    3. Jafar Rahmanishamsi & Ali Dolati & Masoudreza R. Aghabozorgi, 2018. "A Copula Based ICA Algorithm and Its Application to Time Series Clustering," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 230-249, July.
    4. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    5. García, Jesús E. & González-López, V.A. & Nelsen, R.B., 2013. "A new index to measure positive dependence in trivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 481-495.
    6. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    7. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    8. Panagiotou Dimitrios & Stavrakoudis Athanassios, 2016. "Price Dependence between Different Beef Cuts and Quality Grades: A Copula Approach at the Retail Level for the U.S. Beef Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 14(1), pages 121-131, May.
    9. Panagiotou, Dimitrios & Stavrakoudis, Athanassios, 2017. "Vertical price relationships between different cuts and quality grades in the U.S. beef marketing channel: A wholesale-retail analysis," The Journal of Economic Asymmetries, Elsevier, vol. 16(C), pages 53-63.
    10. Angshuman Roy & Anil K. Ghosh & Alok Goswami & C. A. Murthy, 2022. "Some New Copula Based Distribution-free Tests of Independence among Several Random Variables," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 556-596, August.
    11. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    12. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    13. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    2. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    3. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    4. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    5. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    6. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    7. Ying Zhang & Chuancun Yin, 2014. "A new multivariate dependence measure based on comonotonicity," Papers 1410.7845, arXiv.org.
    8. Lee, Woojoo & Ahn, Jae Youn, 2014. "On the multidimensional extension of countermonotonicity and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 68-79.
    9. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    10. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    11. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    12. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    13. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    14. César García‐Gómez & Ana Pérez & Mercedes Prieto‐Alaiz, 2021. "Copula‐based analysis of multivariate dependence patterns between dimensions of poverty in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(1), pages 165-195, March.
    15. Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
    16. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
    17. Lee Woojoo & Ahn Jae Youn, 2017. "Measuring herd behavior: properties and pitfalls," Dependence Modeling, De Gruyter, vol. 5(1), pages 316-329, December.
    18. Chabi-Yo, Fousseni & Huggenberger, Markus & Weigert, Florian, 2022. "Multivariate crash risk," Journal of Financial Economics, Elsevier, vol. 145(1), pages 129-153.
    19. García, Jesús E. & González-López, V.A. & Nelsen, R.B., 2013. "A new index to measure positive dependence in trivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 481-495.
    20. Mesfioui, Mhamed & Quessy, Jean-François, 2010. "Concordance measures for multivariate non-continuous random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2398-2410, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2571-2586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.