IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v84y2022i2d10.1007_s13171-020-00207-2.html
   My bibliography  Save this article

Some New Copula Based Distribution-free Tests of Independence among Several Random Variables

Author

Listed:
  • Angshuman Roy

    (Indian Statistical Institute)

  • Anil K. Ghosh

    (Indian Statistical Institute)

  • Alok Goswami

    (Indian Statistical Institute)

  • C. A. Murthy

    (Indian Statistical Institute)

Abstract

Over the last couple of decades, several copula based methods have been proposed in the literature to test for independence among several random variables. But these existing tests are not invariant under monotone transformations of the variables, and they often perform poorly if the dependence among the variables is highly non-monotone in nature. In this article, we propose a copula based measure of dependency and use it to construct some distribution-free tests of independence. The proposed measure and the resulting tests, all are invariant under permutations and strictly monotone transformations of the variables. Our dependency measure involves a kernel function with an associated bandwidth parameter. We adopt a multi-scale approach, where we look at the results obtained for several choices of the bandwidth and aggregate them judiciously. Large sample properties of the dependency measure and the resulting tests are derived under appropriate regularity conditions. Several simulated and real data sets are analyzed to compare the performance of the proposed tests with some popular tests available in the literature.

Suggested Citation

  • Angshuman Roy & Anil K. Ghosh & Alok Goswami & C. A. Murthy, 2022. "Some New Copula Based Distribution-free Tests of Independence among Several Random Variables," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 556-596, August.
  • Handle: RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-020-00207-2
    DOI: 10.1007/s13171-020-00207-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-020-00207-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-020-00207-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    2. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    3. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    4. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    5. Taskinen, Sara & Oja, Hannu & Randles, Ronald H., 2005. "Multivariate Nonparametric Tests of Independence," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 916-925, September.
    6. Ruth Heller & Yair Heller & Malka Gorfine, 2013. "A consistent multivariate test of association based on ranks of distances," Biometrika, Biometrika Trust, vol. 100(2), pages 503-510.
    7. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
    3. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    4. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    6. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    7. Marc Hallin & Hongjian Shi & Mathias Drton & Fang Han, 2021. "Center-Outward Sign- and Rank-Based Quadrant, Spearman, and Kendall Tests for Multivariate Independence," Working Papers ECARES 2021-27, ULB -- Universite Libre de Bruxelles.
    8. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    9. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    10. Hannu Oja & Davy Paindaveine & Sara Taskinen, 2009. "Parametric and nonparametric test for multivariate independence in IC models," Working Papers ECARES 2009_018, ULB -- Universite Libre de Bruxelles.
    11. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    12. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    13. Fuchs Sebastian & McCord Yann, 2019. "On the lower bound of Spearman’s footrule," Dependence Modeling, De Gruyter, vol. 7(1), pages 126-132, January.
    14. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    15. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    17. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    18. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    19. Cui, Hengjian & Zhong, Wei, 2019. "A distribution-free test of independence based on mean variance index," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 117-133.
    20. Banerjee, Bilol, 2024. "Testing distributional equality for functional random variables," Journal of Multivariate Analysis, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:84:y:2022:i:2:d:10.1007_s13171-020-00207-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.