IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000435.html
   My bibliography  Save this article

Parametric dependence between random vectors via copula-based divergence measures

Author

Listed:
  • De Keyser, Steven
  • Gijbels, Irène

Abstract

This article proposes copula-based dependence quantification between multiple groups of random variables of possibly different sizes via the family of Φ-divergences. An axiomatic framework for this purpose is provided, after which we focus on the absolutely continuous setting assuming copula densities exist. We consider parametric and semi-parametric frameworks, discuss estimation procedures, and report on asymptotic properties of the proposed estimators. In particular, we first concentrate on a Gaussian copula approach yielding explicit and attractive dependence coefficients for specific choices of Φ, which are more amenable for estimation. Next, general parametric copula families are considered, with special attention to nested Archimedean copulas, being a natural choice for dependence modelling of random vectors. The results are illustrated by means of examples. Simulations and a real-world application on financial data are provided as well.

Suggested Citation

  • De Keyser, Steven & Gijbels, Irène, 2024. "Parametric dependence between random vectors via copula-based divergence measures," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000435
    DOI: 10.1016/j.jmva.2024.105336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.