IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v182y2021ics0047259x20302852.html
   My bibliography  Save this article

On the specification of multivariate association measures and their behaviour with increasing dimension

Author

Listed:
  • Gijbels, Irène
  • Kika, Vojtěch
  • Omelka, Marek

Abstract

In this paper the interest is to elaborate on the generalization of bivariate association measures, namely Spearman’s rho, Kendall’s tau, Blomqvist’s beta and Gini’s gamma, for a general dimension d≥2. Desirable properties and axioms for such generalizations are discussed, where special attention is given to the impact of the addition of: (i) an independent random variable to a random vector; (ii) a conical combination of all components; (iii) a set of arbitrary random components. Existing generalizations are evaluated with respect to the axiom set. For a d-variate Gini’s gamma, a simplified formula is developed, making its analytical computation easier. Further, for Archimedean and meta-elliptical copulas the asymptotic behaviour when the dimension d increases is studied. Nonparametric estimation of the considered generalizations of multivariate association measures is reviewed and a nonparametric estimator of the multivariate Gini’s gamma is introduced. The practical use of multivariate association measures is illustrated on a real data example.

Suggested Citation

  • Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302852
    DOI: 10.1016/j.jmva.2020.104704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.
    2. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    3. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    4. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    5. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    6. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    7. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    9. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate extensions of Spearman's rho and related statistics," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 407-416, February.
    10. Pérez, Ana & Prieto-Alaiz, Mercedes, 2016. "A note on nonparametric estimation of copula-based multivariate extensions of Spearman’s rho," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 41-50.
    11. Friedrich Schmid & Rafael Schmidt, 2007. "Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 66(3), pages 323-354, November.
    12. Lobdell, D.T. & Jagai, J.S. & Rappazzo, K. & Messer, L.C., 2011. "Data sources for an environmental quality index: Availability, quality, and utility," American Journal of Public Health, American Public Health Association, vol. 101(SUPPL. 1), pages 277-285.
    13. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    3. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Gijbels Irène & Matterne Margot, 2021. "Study of partial and average conditional Kendall’s tau," Dependence Modeling, De Gruyter, vol. 9(1), pages 82-120, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    2. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    3. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    4. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    5. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    6. Yanqin Fan & Marc Henry, 2020. "Vector copulas," Papers 2009.06558, arXiv.org, revised Apr 2021.
    7. Lee, Woojoo & Ahn, Jae Youn, 2014. "On the multidimensional extension of countermonotonicity and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 68-79.
    8. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Martynas Manstavičius, 2022. "Diversity of Bivariate Concordance Measures," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    10. Jaser Miriam & Haug Stephan & Min Aleksey, 2017. "A simple non-parametric goodness-of-fit test for elliptical copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 330-353, December.
    11. García, Jesús E. & González-López, V.A. & Nelsen, R.B., 2013. "A new index to measure positive dependence in trivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 481-495.
    12. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    13. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    14. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    16. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    17. Liebscher, Eckhard, 2021. "Kendall regression coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    19. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.
    20. Salim Bouzebda, 2023. "On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size," Stats, MDPI, vol. 6(1), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.