IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v31y1999i3p295-310.html
   My bibliography  Save this article

Block length selection in the bootstrap for time series

Author

Listed:
  • Buhlmann, Peter
  • Kunsch, Hans R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
  • Handle: RePEc:eee:csdana:v:31:y:1999:i:3:p:295-310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(99)00014-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahiri, Soumendra Nath, 1991. "Second order optimality of stationary bootstrap," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 335-341, April.
    2. Politis, D. N. & Romano, J. P., 1993. "Nonparametric Resampling for Homogeneous Strong Mixing Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 301-328, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    2. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    3. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    4. Eduardo José Araújo Lima & Benjamin Miranda Tabak, 2008. "Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions," Working Papers Series 173, Central Bank of Brazil, Research Department.
    5. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    6. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    7. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    8. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    9. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    10. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2017. "Relevant states and memory in Markov chain bootstrapping and simulation," European Journal of Operational Research, Elsevier, vol. 256(1), pages 163-177.
    11. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    12. Wu, Edmond H.C. & Yu, Philip L.H. & Li, W.K., 2009. "A smoothed bootstrap test for independence based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2524-2536, May.
    13. F. Giordano & M. La Rocca & C. Perna, 2011. "Properties of the neural network sieve bootstrap," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 803-817.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Marco & Jentsch, Carsten & Kreiss, Jens-Peter, 2015. "Baxter`s inequality and sieve bootstrap for random fields," Working Papers 15-06, University of Mannheim, Department of Economics.
    2. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    3. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    5. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    6. Datta, Somnath & Sriram, T. N., 1995. "A modified bootstrap for branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 275-294, April.
    7. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
    8. Raghu Nandan Sengupta & Rachit Seth & Peter Winker, 2023. "Reliability in Portfolio Optimization using Uncertain Estimates," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 199-233, May.
    9. Jeong, Jinook & Chung, Seoung, 2001. "Bootstrap tests for autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 49-69, November.
    10. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    11. Blaskowitz, Oliver J. & Herwartz, Helmut, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers 2008-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    13. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    14. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    15. Jeremy T. Fox & Patrick Bajari, 2013. "Measuring the Efficiency of an FCC Spectrum Auction," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 100-146, February.
    16. Lahiri, Soumendra Nath, 1997. "On Inconsistency of the Jackknife-after-Bootstrap Bias Estimator for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 15-34, October.
    17. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
    18. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Srijan Sengupta & Xiaofeng Shao & Yingchuan Wang, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 315-326, May.
    19. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    20. Ulrich Hounyo, 2014. "The wild tapered block bootstrap," CREATES Research Papers 2014-32, Department of Economics and Business Economics, Aarhus University.
    21. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:31:y:1999:i:3:p:295-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.