IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp923-930.html
   My bibliography  Save this article

Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model

Author

Listed:
  • Wei, Yu
  • Yu, Qianwen
  • Liu, Jing
  • Cao, Yang

Abstract

This paper investigates the influence of hot money on the return and volatility of the Chinese stock market using a nonlinear Granger causality test and a new GARCH-class model based on mixed data sampling regression (GARCH–MIDAS). The empirical results suggest that no linear or nonlinear causality exists between the growth rate of hot money and the Chinese stock market return, implying that the Chinese stock market is not driven by hot money and vice versa. However, hot money has a significant positive impact on the long-term volatility of the Chinese stock market. Furthermore, the dependence between the long-term volatility caused by hot money and the total volatility of the Chinese stock market is time-variant, indicating that huge volatilities in the stock market are not always triggered by international speculation capital flow and that Chinese authorities should further focus on more systemic reforms in the trading rules and on effectively regulating the stock market.

Suggested Citation

  • Wei, Yu & Yu, Qianwen & Liu, Jing & Cao, Yang, 2018. "Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 923-930.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:923-930
    DOI: 10.1016/j.physa.2017.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117310944
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Tang & Jie Wang & Jianping Lu & Guiwu Wei & Cun Wei & Yu Wei, 2019. "Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making," Mathematics, MDPI, vol. 7(4), pages 1-27, April.
    2. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Zeng, Sheng & Liu, Xinchun & Li, Xiafei & Wei, Qi & Shang, Yue, 2019. "Information dominance among hedging assets: Evidence from return and volatility directional spillovers in time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    More about this item

    Keywords

    Hot money; Chinese stock market; Nonlinear granger causality test; GARCH–MIDAS; Long-term volatility; Real estate market;
    All these keywords.

    JEL classification:

    • F32 - International Economics - - International Finance - - - Current Account Adjustment; Short-term Capital Movements
    • F65 - International Economics - - Economic Impacts of Globalization - - - Finance
    • G01 - Financial Economics - - General - - - Financial Crises
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:923-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.