IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v110y2020icp484-494.html
   My bibliography  Save this article

The effects of prior reviews on perceived review helpfulness: A configuration perspective

Author

Listed:
  • Zhu, Yongmin
  • Liu, Miaomiao
  • Zeng, Xiaohua
  • Huang, Pei

Abstract

Understanding what makes a review helpful is important for consumers and online review management. Previous studies have explored the effects of review attributes, with the underlying assumption being that consumers assess each review independently of prior reviews of the product. Drawing on configuration theory and the literature on prior knowledge influencing consumer information search behavior, we propose that there should be a fit between prior reviews and focal review attributes in determining perceived review helpfulness. Using data from Amazon, we empirically demonstrate their complex interdependency through fuzzy-set qualitative comparative analysis. The results show that descriptive reviews with more words and moderate ratings are perceived as more helpful when all prior reviews have been posted recently, while evaluative reviews with extreme ratings are more helpful when prior reviews exhibit greater disagreement. Our findings help reconcile some conflicting results in the previous literature and provide guidance on review management.

Suggested Citation

  • Zhu, Yongmin & Liu, Miaomiao & Zeng, Xiaohua & Huang, Pei, 2020. "The effects of prior reviews on perceived review helpfulness: A configuration perspective," Journal of Business Research, Elsevier, vol. 110(C), pages 484-494.
  • Handle: RePEc:eee:jbrese:v:110:y:2020:i:c:p:484-494
    DOI: 10.1016/j.jbusres.2020.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296320300424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2020.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. Herr, Paul M & Kardes, Frank R & Kim, John, 1991. "Effects of Word-of-Mouth and Product-Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(4), pages 454-462, March.
    3. Dezhi Yin & Sabyasachi Mitra & Han Zhang, 2016. "Research Note—When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth," Information Systems Research, INFORMS, vol. 27(1), pages 131-144, March.
    4. Roberto Garcia-Castro & Claude Francoeur, 2016. "When more is not better: Complementarities, costs and contingencies in stakeholder management," Strategic Management Journal, Wiley Blackwell, vol. 37(2), pages 406-424, February.
    5. Ragin, Charles C., 2000. "Fuzzy-Set Social Science," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226702773, December.
    6. Rao, Akshay R & Sieben, Wanda A, 1992. "The Effect of Prior Knowledge on Price Acceptability and the Type of Information Examined," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(2), pages 256-270, September.
    7. Wendy W. Moe & David A. Schweidel, 2012. "Online Product Opinions: Incidence, Evaluation, and Evolution," Marketing Science, INFORMS, vol. 31(3), pages 372-386, May.
    8. Kostyra, Daniel S. & Reiner, Jochen & Natter, Martin & Klapper, Daniel, 2016. "Decomposing the effects of online customer reviews on brand, price, and product attributes," International Journal of Research in Marketing, Elsevier, vol. 33(1), pages 11-26.
    9. Fang, Bin & Ye, Qiang & Kucukusta, Deniz & Law, Rob, 2016. "Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics," Tourism Management, Elsevier, vol. 52(C), pages 498-506.
    10. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    11. Brucks, Merrie, 1985. "The Effects of Product Class Knowledge on Information Search Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(1), pages 1-16, June.
    12. Singh, Jyoti Prakash & Irani, Seda & Rana, Nripendra P. & Dwivedi, Yogesh K. & Saumya, Sunil & Kumar Roy, Pradeep, 2017. "Predicting the “helpfulness” of online consumer reviews," Journal of Business Research, Elsevier, vol. 70(C), pages 346-355.
    13. Bin Guo & Shasha Zhou, 2017. "What makes population perception of review helpfulness: an information processing perspective," Electronic Commerce Research, Springer, vol. 17(4), pages 585-608, December.
    14. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    15. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    16. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    17. Filieri, Raffaele, 2016. "What makes an online consumer review trustworthy?," Annals of Tourism Research, Elsevier, vol. 58(C), pages 46-64.
    18. Purnawirawan, Nathalia & De Pelsmacker, Patrick & Dens, Nathalie, 2012. "Balance and Sequence in Online Reviews: How Perceived Usefulness Affects Attitudes and Intentions," Journal of Interactive Marketing, Elsevier, vol. 26(4), pages 244-255.
    19. repec:ucp:bkecon:9780226702766 is not listed on IDEAS
    20. Omar A. El Sawy & Arvind Malhotra & YoungKi Park & Paul A. Pavlou, 2010. "Research Commentary ---Seeking the Configurations of Digital Ecodynamics: It Takes Three to Tango," Information Systems Research, INFORMS, vol. 21(4), pages 835-848, December.
    21. Park, Sangwon & Nicolau, Juan L., 2015. "Asymmetric effects of online consumer reviews," Annals of Tourism Research, Elsevier, vol. 50(C), pages 67-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadreza Mousavizadeh & Mehrdad Koohikamali & Mohammad Salehan & Dam J. Kim, 2022. "An Investigation of Peripheral and Central Cues of Online Customer Review Voting and Helpfulness through the Lens of Elaboration Likelihood Model," Information Systems Frontiers, Springer, vol. 24(1), pages 211-231, February.
    2. Kim, Taeyong & Hwang, Seungsoo & Kim, Minkyung, 2022. "Text analysis of online customer reviews for products in the FCB quadrants: Procedure, outcomes, and implications," Journal of Business Research, Elsevier, vol. 150(C), pages 676-689.
    3. (Kay) Byun, Kyung-ah & Ma, Minghui & Kim, Kevin & Kang, Taeghyun, 2021. "Buying a New Product with Inconsistent Product Reviews from Multiple Sources: The Role of Information Diagnosticity and Advertising," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 81-103.
    4. Jin, Wangyan & Chen, Yuangao & Yang, Shuiqing & Zhou, Shasha & Jiang, Hui & Wei, June, 2023. "Personalized managerial response and negative inconsistent review helpfulness: The mediating effect of perceived response helpfulness," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    5. Banerjee, Snehasish & Chua, Alton Y.K., 2023. "Understanding online fake review production strategies," Journal of Business Research, Elsevier, vol. 156(C).
    6. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    7. Eva, Nathan & Sendjaya, Sen & Prajogo, Daniel & Madison, Karryna, 2021. "Does organizational structure render leadership unnecessary? Configurations of formalization and centralization as a substitute and neutralizer of servant leadership," Journal of Business Research, Elsevier, vol. 129(C), pages 43-56.
    8. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    9. Guangming Xie & Wenbo Du & Hongping Yuan & Yushi Jiang, 2021. "Promoting Reviewer-Related Attribution: Moderately Complex Presentation of Mixed Opinions Activates the Analytic Process," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    10. Lutz, Bernhard & Pröllochs, Nicolas & Neumann, Dirk, 2022. "Are longer reviews always more helpful? Disentangling the interplay between review length and line of argumentation," Journal of Business Research, Elsevier, vol. 144(C), pages 888-901.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    2. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    3. Miyea Kim & Jeongsoo Han & Mina Jun, 2020. "Do same-level review ratings have the same level of review helpfulness? The role of information diagnosticity in online reviews," Information Technology & Tourism, Springer, vol. 22(4), pages 563-591, December.
    4. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    5. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Post-Print halshs-01923196, HAL.
    6. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    7. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Grenoble Ecole de Management (Post-Print) halshs-01923196, HAL.
    8. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    9. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    10. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    11. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    12. Ketron, Seth, 2017. "Investigating the effect of quality of grammar and mechanics (QGAM) in online reviews: The mediating role of reviewer crediblity," Journal of Business Research, Elsevier, vol. 81(C), pages 51-59.
    13. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    14. Yi, Jisu & Oh, Yun Kyung, 2022. "The informational value of multi-attribute online consumer reviews: A text mining approach," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    15. Hernández-Ortega, Blanca, 2020. "When the performance comes into play: The influence of positive online consumer reviews on individuals' post-consumption responses," Journal of Business Research, Elsevier, vol. 113(C), pages 422-435.
    16. Ina Garnefeld & Sabrina Helm & Ann-Kathrin Grötschel, 2020. "May we buy your love? psychological effects of incentives on writing likelihood and valence of online product reviews," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 805-820, December.
    17. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    18. Filieri, Raffaele & Lin, Zhibin & Pino, Giovanni & Alguezaui, Salma & Inversini, Alessandro, 2021. "The role of visual cues in eWOM on consumers’ behavioral intention and decisions," Journal of Business Research, Elsevier, vol. 135(C), pages 663-675.
    19. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2024. "Antecedents and consequences of perceived helpfulness of extremely positive and exaggerated reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    20. Wang, Fang & Karimi, Sahar, 2019. "This product works well (for me): The impact of first-person singular pronouns on online review helpfulness," Journal of Business Research, Elsevier, vol. 104(C), pages 283-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:110:y:2020:i:c:p:484-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.