IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v150y2022icp147-164.html
   My bibliography  Save this article

Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis

Author

Listed:
  • Guha Majumder, Madhumita
  • Dutta Gupta, Sangita
  • Paul, Justin

Abstract

Online customer reviews, considered as electronic word of mouth, have become very useful in the era of e-commerce as they facilitate future purchase decisions. The present study discusses the central and peripheral sources of influence, such as the content of the review, star rating, review length, and the total number of votes on the perceived usefulness of the review. It analyses reviews from Amazon.com on three products, namely, a videogame, digital music, and a grocery item. Using text mining, the study uncovers sentiment polarity, identifies sentiment patterns, and finally, analyses the perceived usefulness of reviews under the moderation effect. The study establishes that the impact of the central route is not significant for search goods. The study concludes that peripheral sources have a significant impact on the search products. Our study provides insights on how marketing strategies can be formulated by online retailers based on the product type.

Suggested Citation

  • Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
  • Handle: RePEc:eee:jbrese:v:150:y:2022:i:c:p:147-164
    DOI: 10.1016/j.jbusres.2022.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322005446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddiqi, Umar Iqbal & Akhtar, Naeem & Islam, Tahir, 2022. "Restaurant hygiene attributes and consumers’ fear of COVID-19: Does psychological distress matter?," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    2. Chopdar, Prasanta Kr & Paul, Justin & Prodanova, Jana, 2022. "Mobile shoppers’ response to Covid-19 phobia, pessimism and smartphone addiction: Does social influence matter?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    3. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    4. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    5. Verma, Sanjeev & Yadav, Neha, 2021. "Past, Present, and Future of Electronic Word of Mouth (EWOM)," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 111-128.
    6. Gunawan, Dedy Darsono & Huarng, Kun-Huang, 2015. "Viral effects of social network and media on consumers’ purchase intention," Journal of Business Research, Elsevier, vol. 68(11), pages 2237-2241.
    7. Rialti, Riccardo & Zollo, Lamberto & Ferraris, Alberto & Alon, Ilan, 2019. "Big data analytics capabilities and performance: Evidence from a moderated multi-mediation model," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    8. Dezhi Yin & Sabyasachi Mitra & Han Zhang, 2016. "Research Note—When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth," Information Systems Research, INFORMS, vol. 27(1), pages 131-144, March.
    9. Alton Y.K. Chua & Snehasish Banerjee, 2015. "Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 354-362, February.
    10. Zablocki, Agnieszka & Makri, Katerina & Houston, Michael J., 2019. "Emotions Within Online Reviews and their Influence on Product Attitudes in Austria, USA and Thailand," Journal of Interactive Marketing, Elsevier, vol. 46(C), pages 20-39.
    11. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    12. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Ferreira, João J.M. & Fernandes, Cristina I. & Ferreira, Fernando A.F., 2019. "To be or not to be digital, that is the question: Firm innovation and performance," Journal of Business Research, Elsevier, vol. 101(C), pages 583-590.
    14. Kaushik, Kapil & Mishra, Rajhans & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon.in," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 21-32.
    15. Chopdar, Prasanta Kr & Paul, Justin & Korfiatis, Nikolaos & Lytras, Miltiadis D., 2022. "Examining the role of consumer impulsiveness in multiple app usage behavior among mobile shoppers," Journal of Business Research, Elsevier, vol. 140(C), pages 657-669.
    16. Stigler, George J., 2011. "Economics of Information," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 5, pages 35-49.
    17. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    18. Purnawirawan, Nathalia & Eisend, Martin & De Pelsmacker, Patrick & Dens, Nathalie, 2015. "A Meta-analytic Investigation of the Role of Valence in Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 31(C), pages 17-27.
    19. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    20. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    21. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    22. Hollebeek, Linda D. & Glynn, Mark S. & Brodie, Roderick J., 2014. "Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation," Journal of Interactive Marketing, Elsevier, vol. 28(2), pages 149-165.
    23. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    24. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    25. Paul A. Pavlou & Angelika Dimoka, 2006. "The Nature and Role of Feedback Text Comments in Online Marketplaces: Implications for Trust Building, Price Premiums, and Seller Differentiation," Information Systems Research, INFORMS, vol. 17(4), pages 392-414, December.
    26. David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Wei & Wang, Jiaxuan & Shi, Xiaoxiao & David Evans, Richard, 2024. "The impact of electronic word-of-mouth on patients’ choices in online health communities: A cross-media perspective," Journal of Business Research, Elsevier, vol. 173(C).
    2. Zhai, Mengfan & Wang, Xinyue & Zhao, Xijie, 2024. "The importance of online customer reviews characteristics on remanufactured product sales: Evidence from the mobile phone market on Amazon.com," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    3. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    4. Sleep, Stefan & Gala, Prachi & Harrison, Dana E., 2023. "Removing silos to enable data-driven decisions: The importance of marketing and IT knowledge, cooperation, and information quality," Journal of Business Research, Elsevier, vol. 156(C).
    5. Nilashi, Mehrbakhsh & Abumalloh, Rabab Ali & Samad, Sarminah & Alrizq, Mesfer & Alyami, Sultan & Abosaq, Hamad & Alghamdi, Abdullah & Akib, Noor Adelyna Mohammed, 2022. "Factors impacting customer purchase intention of smart home security systems: Social data analysis using machine learning techniques," Technology in Society, Elsevier, vol. 71(C).
    6. Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    2. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    3. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    4. Lutz, Bernhard & Pröllochs, Nicolas & Neumann, Dirk, 2022. "Are longer reviews always more helpful? Disentangling the interplay between review length and line of argumentation," Journal of Business Research, Elsevier, vol. 144(C), pages 888-901.
    5. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    6. Colmekcioglu, Nazan & Marvi, Reza & Foroudi, Pantea & Okumus, Fevzi, 2022. "Generation, susceptibility, and response regarding negativity: An in-depth analysis on negative online reviews," Journal of Business Research, Elsevier, vol. 153(C), pages 235-250.
    7. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    8. Zhuolan Bao & Wenwen Li & Pengzhen Yin & Michael Chau, 2021. "Examining the impact of review tag function on product evaluation and information perception of popular products," Information Systems and e-Business Management, Springer, vol. 19(2), pages 517-539, June.
    9. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    10. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    11. Yili (Kevin) Hong & Paul A. Pavlou, 2014. "Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents," Information Systems Research, INFORMS, vol. 25(2), pages 328-344, June.
    12. Lorenz Graf-Vlachy & Tarun Goyal & Yannick Ouardi & Andreas König, 2021. "Reviews Left and Right: The Link Between Reviewers’ Political Ideology and Online Review Language," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 403-417, August.
    13. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    14. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    15. Hossin Md Altab & Mu Yinping & Hosain Md Sajjad & Adasa Nkrumah Kofi Frimpong & Michelle Frempomaa Frempong & Stephen Sarfo Adu-Yeboah, 2022. "Understanding Online Consumer Textual Reviews and Rating: Review Length With Moderated Multiple Regression Analysis Approach," SAGE Open, , vol. 12(2), pages 21582440221, June.
    16. Roma, Paolo & Aloini, Davide, 2019. "How does brand-related user-generated content differ across social media? Evidence reloaded," Journal of Business Research, Elsevier, vol. 96(C), pages 322-339.
    17. Jifeng Luo & Ying Rong & Huan Zheng, 2020. "Impacts of logistics information on sales: Evidence from Alibaba," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 646-669, December.
    18. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    19. Zhijie Lin & Ying Zhang & Yong Tan, 2019. "An Empirical Study of Free Product Sampling and Rating Bias," Service Science, INFORMS, vol. 30(1), pages 260-275, March.
    20. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:150:y:2022:i:c:p:147-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.