IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v11y2005i6p426-431.html
   My bibliography  Save this article

Managing lumpy demand for aircraft spare parts

Author

Listed:
  • Regattieri, A.
  • Gamberi, M.
  • Gamberini, R.
  • Manzini, R.

Abstract

This paper deals with effective forecasting methods for typically lumpy demand for aircraft spare parts, and analyzes the behavior of forecasting techniques when dealing with lumpy demand. Twenty forecasting techniques are considered and tested and historical data from Alitalia are used to analyze and compare their performance. The results demonstrate that item lumpiness is the dominant parameter and show that demand forecasting for lumpy items is a complex problem; results from previous studies are not very accurate. The best approaches are found to be weighted moving averages, the Croston method, and exponentially weighted moving average models.

Suggested Citation

  • Regattieri, A. & Gamberi, M. & Gamberini, R. & Manzini, R., 2005. "Managing lumpy demand for aircraft spare parts," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 426-431.
  • Handle: RePEc:eee:jaitra:v:11:y:2005:i:6:p:426-431
    DOI: 10.1016/j.jairtraman.2005.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699705000530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2005.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghobbar, A.A & Friend, C.H, 2002. "Sources of intermittent demand for aircraft spare parts within airline operations," Journal of Air Transport Management, Elsevier, vol. 8(4), pages 221-231.
    2. Ghobbar, Adel A. & Friend, Chris H., 2004. "The material requirements planning system for aircraft maintenance and inventory control: a note," Journal of Air Transport Management, Elsevier, vol. 10(3), pages 217-221.
    3. Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
    4. Alstrom, Poul & Madsen, Per, 1996. "Tracking signals in inventory control systems A simulation study," International Journal of Production Economics, Elsevier, vol. 45(1-3), pages 293-302, August.
    5. Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Jingyao & Zhang, Guoqing & Li, Kevin W., 2015. "Efficient aircraft spare parts inventory management under demand uncertainty," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 101-109.
    2. Nenes, George & Panagiotidou, Sofia & Tagaras, George, 2010. "Inventory management of multiple items with irregular demand: A case study," European Journal of Operational Research, Elsevier, vol. 205(2), pages 313-324, September.
    3. Binoy Debnath & Md Shihab Shakur & Fahmida Tanjum & M. Azizur Rahman & Ziaul Haq Adnan, 2022. "Impact of Additive Manufacturing on the Supply Chain of Aerospace Spare Parts Industry—A Review," Logistics, MDPI, vol. 6(2), pages 1-25, April.
    4. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
    5. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    6. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    7. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
    8. Gutierrez, Rafael S. & Solis, Adriano O. & Mukhopadhyay, Somnath, 2008. "Lumpy demand forecasting using neural networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 409-420, February.
    9. Ito, Kodo & Mizutani, Satoshi & Nakagawa, Toshio, 2020. "Optimal inspection models with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    11. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    12. Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
    13. Lowas, Albert F. & Ciarallo, Frank W., 2016. "Reliability and operations: Keys to lumpy aircraft spare parts demands," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 30-40.
    14. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    15. R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
    16. Regattieri, A. & Giazzi, A. & Gamberi, M. & Gamberini, R., 2015. "An innovative method to optimize the maintenance policies in an aircraft: General framework and case study," Journal of Air Transport Management, Elsevier, vol. 44, pages 8-20.
    17. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2019. "A supporting framework for maintenance capacity planning and scheduling: Development and application in the aircraft MRO industry," International Journal of Production Economics, Elsevier, vol. 218(C), pages 1-15.
    18. Syntetos, Aris A., 2007. "A note on managing lumpy demand for aircraft spare parts," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 166-167.
    19. Jae-Dong Kim & Tae-Hyeong Kim & Sung Won Han, 2023. "Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks," Mathematics, MDPI, vol. 11(3), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    2. Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
    3. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    4. Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
    5. Nenes, George & Panagiotidou, Sofia & Tagaras, George, 2010. "Inventory management of multiple items with irregular demand: A case study," European Journal of Operational Research, Elsevier, vol. 205(2), pages 313-324, September.
    6. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    7. Boylan, John E. & Babai, M. Zied, 2022. "Estimating the cumulative distribution function of lead-time demand using bootstrapping with and without replacement," International Journal of Production Economics, Elsevier, vol. 252(C).
    8. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    9. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    10. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    11. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    12. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    13. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Jakub Dyntar & Eva Kemrová & Ivan Gros, 2010. "Simulation approach in stock control of products with sporadic demand," Ekonomika a Management, Prague University of Economics and Business, vol. 2010(3).
    15. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    16. Boylan, J.E. & Syntetos, A.A., 2007. "The accuracy of a Modified Croston procedure," International Journal of Production Economics, Elsevier, vol. 107(2), pages 511-517, June.
    17. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
    18. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    19. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    20. Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:11:y:2005:i:6:p:426-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.