IDEAS home Printed from https://ideas.repec.org/a/prg/jnleam/v2010y2010i3id107.html
   My bibliography  Save this article

Simulation approach in stock control of products with sporadic demand

Author

Listed:
  • Jakub Dyntar
  • Eva Kemrová
  • Ivan Gros

Abstract

Croston's method and its modifications are the most commonly used methods in sporadic demand of product stock management systems. This method eliminates the drawbacks of classical exponential smoothing and secures sufficient stock levels during order lead time period. The disadvantage of Croston's method is the fact that it solves only the question of the reorder point but does not solve the problem of restocking delivery volume and the mechanism of ordering. The questions are how to refill stocks and what level of restocking deliveries to implement in order to secure economic efficiency while still maintaining demanded service levels. One of the promising ways of solving stated problems is to apply the dynamic simulation method. The aim of this article is to introduce sporadic demand product stock management method based on dynamic simulation, which would offer simple and easily interpretable answers on basic questions connected to effective stock management.

Suggested Citation

  • Jakub Dyntar & Eva Kemrová & Ivan Gros, 2010. "Simulation approach in stock control of products with sporadic demand," Ekonomika a Management, Prague University of Economics and Business, vol. 2010(3).
  • Handle: RePEc:prg:jnleam:v:2010:y:2010:i:3:id:107
    as

    Download full text from publisher

    File URL: http://www.vse.cz/eam/download.php?jnl=eam&pdf=107.pdf
    Download Restriction: free of charge

    File URL: http://www.vse.cz/eam/107
    Download Restriction: free of charge
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    3. Teunter, Ruud & Sani, Babangida, 2009. "On the bias of Croston's forecasting method," European Journal of Operational Research, Elsevier, vol. 194(1), pages 177-183, April.
    4. Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
    5. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    6. Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
    7. Gardner, Everette Jr. & Koehler, Anne B., 2005. "Comments on a patented bootstrapping method for forecasting intermittent demand," International Journal of Forecasting, Elsevier, vol. 21(3), pages 617-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    2. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    3. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    4. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    5. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    6. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    7. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    8. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    9. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
    10. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    11. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Aiping Jiang & Qiuguo Chi & Junjun Gao & Maoguo Wu, 2019. "An Integrated Approach to Forecasting Intermittent Demand for Electric Power Materials," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1309-1335, April.
    14. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    15. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    16. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    17. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    18. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    19. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.

    More about this item

    Keywords

    Forecasting; Sporadic Demand; Inventory Management; Simulation;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnleam:v:2010:y:2010:i:3:id:107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.