IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p501-d1038703.html
   My bibliography  Save this article

Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks

Author

Listed:
  • Jae-Dong Kim

    (School of Industrial and Management Engineering, Korea University, Seoul 02481, Republic of Korea
    Center for Defense Resource Management, Korea Institute for Defense Analyses, Seoul 02455, Republic of Korea
    These authors contributed equally to this work.)

  • Tae-Hyeong Kim

    (School of Industrial and Management Engineering, Korea University, Seoul 02481, Republic of Korea
    These authors contributed equally to this work.)

  • Sung Won Han

    (School of Industrial and Management Engineering, Korea University, Seoul 02481, Republic of Korea)

Abstract

The proportion of the inventory range associated with spare parts is often considered in the industrial context. Therefore, even minor improvements in forecasting the demand for spare parts can lead to substantial cost savings. Despite notable research efforts, demand forecasting remains challenging, especially in areas with irregular demand patterns, such as military logistics. Thus, an advanced model for accurately forecasting this demand was developed in this study. The K-X tank is one of the Republic of Korea Army’s third generation main battle tanks. Data about the spare part consumption of 1,053,422 transactional data points stored in a military logistics management system were obtained. Demand forecasting classification models were developed to exploit machine learning, stacked generalization, and time series as baseline methods. Additionally, various stacked generalizations were established in spare part demand forecasting. The results demonstrated that a suitable selection of methods could help enhance the performance of the forecasting models in this domain.

Suggested Citation

  • Jae-Dong Kim & Tae-Hyeong Kim & Sung Won Han, 2023. "Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks," Mathematics, MDPI, vol. 11(3), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:501-:d:1038703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Regattieri, A. & Gamberi, M. & Gamberini, R. & Manzini, R., 2005. "Managing lumpy demand for aircraft spare parts," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 426-431.
    2. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto Armando Pacheco-Velázquez & Manuel Robles-Cárdenas & Saúl Juárez Ordóñez & Abelardo Ernesto Damy Solís & Leopoldo Eduardo Cárdenas-Barrón, 2023. "A Heuristic Model for Spare Parts Stocking Based on Markov Chains," Mathematics, MDPI, vol. 11(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    3. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    4. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    5. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    6. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    7. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    8. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    9. Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
    10. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    11. Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich, 2019. "Feature quantization for parsimonious and interpretable predictive models," Papers 1903.08920, arXiv.org.
    12. Onur Doğan & Hakan Aşan & Ejder Ayç, 2015. "Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm," European Journal of Business and Economics, Central Bohemia University, vol. 10(2), pages 6821:10-682, January.
    13. Agapito, Dora & Mendes, Julio & Valle, Patricia, 2011. "The Sea as a Connection between Residents and Tourists in Coastal Destinations: A Case in Algarve," Spatial and Organizational Dynamics Discussion Papers 2011-13, CIEO-Research Centre for Spatial and Organizational Dynamics, University of Algarve.
    14. Francisco Javier Rondán-Cataluña & Patricio E. Ramírez-Correa & Jorge Arenas-Gaitán & Muriel Ramírez-Santana & Elizabeth E. Grandón & Jorge Alfaro-Pérez, 2020. "Social Network Communications in Chilean Older Adults," IJERPH, MDPI, vol. 17(17), pages 1-17, August.
    15. Timmins, Christopher & Vissing, Ashley, 2022. "Environmental justice and Coasian bargaining: The role of race, ethnicity, and income in lease negotiations for shale gas," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. A. Israëls & J. Driel, 1983. "Use of the chi-square statistic for selecting explanatory variables in multiway tables," Quality & Quantity: International Journal of Methodology, Springer, vol. 17(2), pages 103-116, April.
    17. Nocella, Giuseppe & Stefani, Gianluca & Romano, Donato, 2011. "Preferences, trust and willingness to pay for food information: An analysis of the Italian Market," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114606, European Association of Agricultural Economists.
    18. Auld, Joshua & Mohammadian, Abolfazl (Kouros) & Doherty, Sean T., 2009. "Modeling activity conflict resolution strategies using scheduling process data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 386-400, May.
    19. Marina Segura & Jorge Mello & Adolfo Hernández, 2022. "Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    20. Alvarez-Gonzalez, José A. & Diaz-Perez, Flora M. & Bethencourt Cejas, Maria & Gonzalez Morales, M Olga, 2002. "The segmentation of the Canarian tourism market with regared to expenditure: an empirical study of La Palma," ERSA conference papers ersa02p251, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:501-:d:1038703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.