IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20212510.html
   My bibliography  Save this paper

Nowcasting in a pandemic using non-parametric mixed frequency VARs

Author

Listed:
  • Huber, Florian
  • Koop, Gary
  • Onorante, Luca
  • Pfarrhofer, Michael
  • Schreiner, Josef

Abstract

This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR. JEL Classification: C11, C32, C53, E37

Suggested Citation

  • Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20212510
    Note: 412615
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2510~310814c1ed.en.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frank Schorfheide & Dongho Song, 2024. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," International Journal of Central Banking, International Journal of Central Banking, vol. 20(4), pages 275-320, October.
    2. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2021. "Multimodality In Macrofinancial Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 861-886, May.
    3. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    4. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
    5. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    6. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    7. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    8. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    9. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    10. Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
    11. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    12. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    15. Antonio R. Linero, 2018. "Bayesian Regression Trees for High-Dimensional Prediction and Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 626-636, April.
    16. Lorin Crawford & Kris C. Wood & Xiang Zhou & Sayan Mukherjee, 2018. "Bayesian Approximate Kernel Regression With Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1710-1721, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020. "Reconciled Estimates of Monthly GDP in the US," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
    2. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    3. Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
    4. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the output gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    6. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    7. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    9. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020. "Computationally efficient inference in large Bayesian mixed frequency VARs," Economics Letters, Elsevier, vol. 191(C).
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," Working Papers 21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
    13. Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2021. "Measuring the effectiveness of US monetary policy during the COVID‐19 recession," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 287-297, July.
    14. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    15. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
    16. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    18. Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
    19. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
    20. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.

    More about this item

    Keywords

    Bayesian; macroeconomic forecasting; regression tree models; vector autoregressions;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20212510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.