IDEAS home Printed from https://ideas.repec.org/p/bny/wpaper/0044.html
   My bibliography  Save this paper

Words are the new numbers: A newsy coincident index of business cycles

Author

Listed:
  • Leif Anders Thorsrud

Abstract

In this paper I construct a daily business cycle index based on quarterly GDP and textual information contained in a daily business newspaper. The newspaper data is decomposed into time series representing newspaper topics using a Latent Dirichlet Allocation model. The business cycle index is estimated using the newspaper topics and a time-varying Dynamic Factor Model where dynamic sparsity is enforced upon the factor loadings using a latent threshold mechanism. I show that both contributions, the usage of newspaper data and the latent threshold mechanism, contribute towards the qualities of the derived index: It is more timely and accurate than commonly used alternative business cycle indicators and indexes, and, it provides the index user with broad based high frequent information about the type of news that drive or reflect economic fluctuations.

Suggested Citation

  • Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  • Handle: RePEc:bny:wpaper:0044
    as

    Download full text from publisher

    File URL: https://www.bi.edu/contentassets/082a6ace23ff45aeb996aa49de7b35ca/working_camp_4-2016.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. N. Bloom, 2016. "Fluctuations in uncertainty," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    3. Vegard H. Larsen & Leif Anders Thorsrud, 2015. "The Value of News," Working Papers No 6/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    5. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    6. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    7. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    8. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    9. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    10. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    11. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    12. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
    13. Colin Ellis & Haroon Mumtaz & Pawel Zabczyk, 2014. "What Lies Beneath? A Time‐varying FAVAR Model for the UK Transmission Mechanism," Economic Journal, Royal Economic Society, vol. 0(576), pages 668-699, May.
    14. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    15. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    16. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    17. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    18. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    19. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    20. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    21. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    22. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    23. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    24. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    25. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    26. Hilde C. Bj rnland & Leif Anders Thorsrud, 2015. "Commodity prices and fiscal policy design: Procyclical despite a rule," Working Papers No 5/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    27. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    28. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    29. Paul Beaudry & Deokwoo Nam & Jian Wang, 2011. "Do Mood Swings Drive Business Cycles and is it Rational?," NBER Working Papers 17651, National Bureau of Economic Research, Inc.
    30. Nathan S. Balke & Michael Fulmer & Ren Zhang, 2017. "Incorporating the Beige Book into a Quantitative Index of Economic Activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 497-514, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lino Wehrheim, 2019. "Economic history goes digital: topic modeling the Journal of Economic History," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 13(1), pages 83-125, January.
    2. Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
    3. Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022. "Measuring news sentiment," Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
    4. Corinna Ghirelli & Juan Peñalosa & Javier J. Pérez & Alberto Urtasun, 2019. "Some implications of new data sources for economic analysis and official statistics," Economic Bulletin, Banco de España, issue JUN.
    5. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    6. Nimark, Kristoffer P. & Pitschner, Stefan, 2019. "News media and delegated information choice," Journal of Economic Theory, Elsevier, vol. 181(C), pages 160-196.
    7. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    8. Larisa Adamyan & Kirill Efimov & Cathy Y. Chen & Wolfgang K. Härdle, 2020. "Adaptive weights clustering of research papers," Digital Finance, Springer, vol. 2(3), pages 169-187, December.
    9. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2022. "Asset returns, news topics, and media effects," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 838-868, July.
    10. Dorine Boumans & Henrik Müller & Stefan Sauer, 2022. "How Media Content Influences Economic Expectations: Evidence from a Global Expert Survey," ifo Working Paper Series 380, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    11. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Anton Oleinik, 2022. "Relevance in Web search: between content, authority and popularity," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 173-194, February.
    13. Lino Wehrheim, 2017. "Economic History Goes Digital: Topic Modeling the Journal of Economic History," Working Papers 177, Bavarian Graduate Program in Economics (BGPE).
    14. Keiichi Goshima & Hiroshi Ishijima & Mototsugu Shintani & Hiroki Yamamoto, 2019. "Forecasting Japanese inflation with a news-based leading indicator of economic activities," CARF F-Series CARF-F-458, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Mikhaylov, Dmitry, 2023. "Macroeconomic Forecasting with the Use of News Data," Working Papers w20220250, Russian Presidential Academy of National Economy and Public Administration.
    16. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    17. repec:hum:wpaper:sfb649dp2017-013 is not listed on IDEAS
    18. Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
    2. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    3. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    6. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    7. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    8. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    9. Issler, Joao Victor & Notini, Hilton & Rodrigues, Claudia & Soares, Ana Flávia, 2013. "Constructing coincident indices of economic activity for the Latin American economy," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    10. Agnieszka Gehringer & Thomas Mayer, 2021. "Measuring the Business Cycle Chronology with a Novel Business Cycle Indicator for Germany," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 71-89, April.
    11. repec:fgv:epgrbe:v:67:n:1:a:4 is not listed on IDEAS
    12. Vegard H. Larsen & Leif Anders Thorsrud, 2015. "The Value of News," Working Papers No 6/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    13. João Victor Issler & Hilton Hostalacio Notini & Claudia Fontoura Rodrigues, 2013. "Constructing coincident and leading indices of economic activity for the Brazilian economy," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 43-65.
    14. Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
    15. Enrique A. López-Enciso, 2017. "Dos tradiciones en la medición del ciclo: historia general y desarrollos en Colombia," Borradores de Economia 986, Banco de la Republica de Colombia.
    16. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(1), pages 1-34, February.
    17. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    18. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    19. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    20. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    21. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.

    More about this item

    Keywords

    Business cycles; Dynamic Factor Model; Latent Dirichlet Allocation (LDA);
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bny:wpaper:0044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helene Olsen (email available below). General contact details of provider: https://edirc.repec.org/data/cambino.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.