Nowcasting inflation with Lasso‐regularized vector autoregressions and mixed frequency data
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2944
Download full text from publisher
References listed on IDEAS
- Fabio Canova & Filippo Ferroni, 2011.
"Multiple filtering devices for the estimation of cyclical DSGE models,"
Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
- Fabio Canova & Filippo Ferroni, 2009. "Multiple filtering devices for the estimation of cyclical DSGE models," Economics Working Papers 1135, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2010.
- Fabio Canova & Filippo Ferroni, 2010. "Multiple Filtering Devices for the Estimation of Cyclical DSGE Models," Working Papers 498, Barcelona School of Economics.
- Jing Cynthia Wu & Fan Dora Xia, 2020.
"Negative interest rate policy and the yield curve,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 653-672, September.
- Jing Cynthia Wu & Fan Dora Xia, 2018. "Negative Interest Rate Policy and the Yield Curve," NBER Working Papers 25180, National Bureau of Economic Research, Inc.
- Dora Xia & Jing Cynthia Wu, 2018. "The negative interest rate policy and the yield curve," BIS Working Papers 703, Bank for International Settlements.
- Jing Cynthia Wu & Fan Dora Xia, 2016.
"Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
- Jing Cynthia Wu & Fan Dora Xia, 2014. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," NBER Working Papers 20117, National Bureau of Economic Research, Inc.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Jacopo Cimadomo & Antonello D'Agostino, 2016.
"Combining Time Variation and Mixed Frequencies: an Analysis of Government Spending Multipliers in Italy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1276-1290, November.
- D'Agostino, Antonello & Cimadomo, Jacopo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Paper Series 1856, European Central Bank.
- Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
- Gabriele Di Filippo, 2015. "Dynamic Model Averaging and CPI Inflation Forecasts: A Comparison between the Euro Area and the United States," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 619-648, December.
- Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
- Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
- Kirstin Hubrich & Frauke Skudelny, 2017.
"Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
- Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
- Kirstin Hubrich & Frauke Skudelny, 2016. "Forecast Combination for Euro Area Inflation - A Cure in Times of Crisis?," Finance and Economics Discussion Series 2016-104, Board of Governors of the Federal Reserve System (U.S.).
- Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
- Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
- Troy D. Matheson, 2014.
"New indicators for tracking growth in real time,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 51-71.
- Mr. Troy D Matheson, 2011. "New Indicators for Tracking Growth in Real Time," IMF Working Papers 2011/043, International Monetary Fund.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Francis X. Diebold, 2020.
"Real-Time Real Economic Activity:Exiting the Great Recession and Entering the Pandemic Recession,"
PIER Working Paper Archive
20-023, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2020. "Real-Time Real Economic Activity: Exiting the Great Recession and Entering the Pandemic Recession," NBER Working Papers 27482, National Bureau of Economic Research, Inc.
- Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
- Mr. Jean-Francois Dauphin & Mr. Kamil Dybczak & Morgan Maneely & Marzie Taheri Sanjani & Mrs. Nujin Suphaphiphat & Yifei Wang & Hanqi Zhang, 2022. "Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies," IMF Working Papers 2022/052, International Monetary Fund.
- de Bondt, Gabe J. & Hahn, Elke & Zekaite, Zivile, 2021. "ALICE: Composite leading indicators for euro area inflation cycles," International Journal of Forecasting, Elsevier, vol. 37(2), pages 687-707.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- JÖrg Breitung & Christoph Roling, 2015. "Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 588-603, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Barış Soybilgen & M. Ege Yazgan & Hüseyin Kaya, 2023. "Nowcasting Turkish Food Inflation Using Daily Online Prices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 171-190, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Cubadda, Gianluca & Guardabascio, Barbara, 2012.
"A medium-N approach to macroeconomic forecasting,"
Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
- Gianluca Cubadda & Barbara Guardabascio, 2010. "A Medium-N Approach to Macroeconomic Forecasting," CEIS Research Paper 176, Tor Vergata University, CEIS, revised 09 Dec 2010.
- Bekiros Stelios & Paccagnini Alessia, 2015.
"Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
- Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Raul Ibarra & Luis M. Gomez-Zamudio, 2017.
"Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico,"
Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
- Gómez-Zamudio, Luis M. & Ibarra, Raúl, 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," LSE Research Online Documents on Economics 123310, London School of Economics and Political Science, LSE Library.
- Ibarra-Ramírez Raúl & Gómez-Zamudio Luis M., 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," Working Papers 2017-17, Banco de México.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
- Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011.
"Forecasting the US real house price index: Structural and non-structural models with and without fundamentals,"
Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
- Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022.
"The global component of inflation volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2018. "The global component of inflation volatility," Temi di discussione (Economic working papers) 1170, Bank of Italy, Economic Research and International Relations Area.
- Marcellino, Massimiliano & Carriero, Andrea & Corsello, Francesco, 2019. "The Global Component of Inflation Volatility," CEPR Discussion Papers 13470, C.E.P.R. Discussion Papers.
- Gianluca Cubadda, 2024. "VAR models with an index structure: A survey with new results," Papers 2412.11278, arXiv.org.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:3:p:464-480. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.