IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i3p401-417.html
   My bibliography  Save this article

Quantile estimators with orthogonal pinball loss function

Author

Listed:
  • Lean Yu
  • Zebin Yang
  • Ling Tang

Abstract

To guarantee stable quantile estimations even for noisy data, a novel loss function and novel quantile estimators are developed, by introducing the effective concept of orthogonal loss considering the noise in both response and explanatory variables. In particular, the pinball loss used in classical quantile estimators is improved into novel orthogonal pinball loss (OPL) by replacing vertical loss by orthogonal loss. Accordingly, linear quantile regression (QR) and support vector machine quantile regression (SVMQR) can be respectively extended into novel OPL†based QR and OPL†based SVMQR models. The empirical study on 10 publicly available datasets statistically verifies the superiority of the two OPL†based models over their respective original forms in terms of prediction accuracy and quantile property, especially for extreme quantiles. Furthermore, the novel OPL†based SVMQR model with both OPL and artificial intelligence (AI) outperforms all benchmark models, which can be used as a promising quantile estimator, especially for noisy data.

Suggested Citation

  • Lean Yu & Zebin Yang & Ling Tang, 2018. "Quantile estimators with orthogonal pinball loss function," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 401-417, April.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:401-417
    DOI: 10.1002/for.2510
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2510
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    2. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    3. Jying-Nan Wang & Jiangze Du & Chonghui Jiang & Kin-Keung Lai, 2019. "Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    4. Liu, Jiajia & Li, Xuerong & Wang, Shouyang, 2020. "What have we learnt from 10 years of fintech research? a scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:401-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.